Spacetime is money

Por ahora los futbolistas, “celebrities” y ganadores de “Operación Triunfo” son los amos de la TV. Pero hay cosas que siguen siendo serias y el dinero es una de ellas:

EinsteinBanknote

Billete israelí de 5 Lirots de 1968

 

¿Cuanto falta para que tengamos a futbolistas en los billetes? La verdad es que… nada:

89066949_best_banknote_185938a

Billete de 5 libras, emitido por el Banco del Ulster en 2006

 

Eso sí, todavía los científicos ganan por goleada:

CientificosEnBilletes

 

¿Se han fijado en el último? Algún día tendremos que hablar de él aquí.

Emulando a Galileo… con el móvil.

Hace 400 años hizo falta un genio como Galileo para demostrar la ley de caída de los cuerpos. Tuvo que superar muchas dificultades, algunas conceptuales (había que dejar de ver el mundo con los ojos de Aristóteles) y otras experimentales (no es nada fácil tomar medidas de la caída libre de un cuerpo: ¡todo ocurre demasiado deprisa!).

Para retardar la caída, Galileo tuvo la idea de usar una bolita rodando por un plano inclinado. Aun así, no podía medir velocidades, y ni siquiera valores absolutos de los tiempos, sólo medir (más o menos) los espacios recorridos en tiempos iguales. Consiguió demostrar, de todos modos, que el espacio recorrido aumenta proporcionalmente al cuadrado del tiempo, y que esto significa que la velocidad aumenta en proporción al tiempo. Es decir, que se trata de lo que hoy llamamos un movimiento uniformemente acelerado.

Hemos progresado mucho desde los tiempos de Galileo. En el bolsillo llevamos un instrumento científico de una precisión con la que él no pudo soñar: el teléfono móvil.  ¿Podríamos usarlo para demostrar lo que a él le costó tanto esfuerzo? La respuesta es que sí, y que ni siquiera necesitamos plano inclinado. Podemos grabar la caída libre de una pelota y verificar que el espacio recorrido aumenta en proporción al cuadrado del tiempo. Y resulta incluso que, con un poco de ingenio, podemos medir casi directamente la velocidad, y comprobar que aumenta en proporción al tiempo. Este es el trabajo que propuse hace ya más de tres meses a los alumnos de 2º de la ESO del PEAC de Madrid Este (ver este post). Ya era hora de que lo contara aquí.

FOTOS EXPERTO_30 ENERO_JUAN MELENDEZ 002

Hemos utilizado el vídeo que ya colgué en su día:

La idea es extraer de la película los fotogramas uno a uno y a partir de ellos, sacar la posición de la pelota en función del tiempo.

El proceso, cuando ya se tienen los fotogramas, se explica en este guión. Pero extraer los fotogramas no es tan sencillo como pudiera parecer. La mayoría de los reproductores de vídeo para PCs no lo permiten, y alguno muy popular que sí lo hace (VLC Media Player) no lo hace bien: se salta fotogramas sin avisar y eso es un desastre para nuestros propósitos. Programas profesionales como Matlab lo hacen perfectamente, pero no están al alcance de cualquiera… Finalmente, encontré la solución con GOM Player, un reproductor de vídeo de software libre que extrae sin ningún problema los fotogramas (se explica en el último apartado del guión).

Una vez que tenemos los fotogramas, ¿cuál es el intervalo de tiempo entre ellos? Para algunos formatos de vídeo, lo podemos saber desde el explorador de Windows: con el botón derecho del ratón, elegimos “propiedades”, la pestaña “detalles” y encontramos, por ejemplo, “Velocidad fotograma: 25 fotogramas/segundo”. Tenemos entonces 1/25 = 0,04 s entre cada fotograma. Pero con otros formatos esa información no aparece, por ejemplo, con archivos mpg como la grabación original que utilicé. En ese caso, GOM Player viene al rescate: en el menú, elegimos “información del archivo que se está reproduciendo” (o hacemos Cntrl+F1) y en “información de archivo” encontramos “Frame Rate”, y el número de fotogramas por segundo (fps).

A partir de aquí, se trata sólo de medir sobre los fotogramas las posiciones de la pelota. Con dos marcas en el fondo de la imagen, separadas una distancia conocida (en nuestro caso, 10 cm), podemos hacer la conversión de píxeles a cm. Para facilitar las cuentas, he creado una hoja de cálculo Excel: Caída libre PEAC.xls, donde introduciendo los datos se hace la conversión a cm y la gráfica que muestra la posición frente al tiempo.

¿Y qué hay de medir directamente la velocidad? Lo podemos hacer porque la pelota sale “movida”: se ve como una mancha alargada, tanto más cuanto más deprisa va, debido a que la cámara obtiene los fotogramas con un cierto tiempo de exposición. Hay un único problema: no sabemos cuál es ese tiempo. En el archivo Excel he hecho una pequeña trampa, estimando el tiempo de exposición a partir de la aceleración (medida del ajuste de las posiciones).

Para quien quiera repetir por sí mismo la toma de datos, a partir de las imágenes de mi vídeo, he dejado los fotogramas ya extraídos aquí. Pero lo mejor es realizar todo el proceso uno mismo, con el móvil que lleva en el bolsillo: ¡Cuánto hubiera dado Galileo por poder hacerlo!

Del mapa al calendario

Lector: Quería preguntarle una cosa

Autor: Hombre, lector, hacía tiempo que no se pasaba por aquí. ¿De qué se trata?

L.: Verá, un amigo mío me ha pasado esta imagen y me ha preguntado si sería capaz de decir a que día del año corresponde y qué hora es en Madrid. Y tengo alguna idea, pero me parece que no se puede saber con tanta precisión como él dice.

A.: ¿Con qué precisión dice?

L.: Por lo visto se lo han preguntado en un examen, y le pedían el mes y la hora aproximada.

A.: Sí, eso es fácil. Saber el día exacto no, pero para saber el mes no hay problema. Y la hora, si es aproximada, también. En realidad, la hora se puede saber con bastante precisión.

L.: Pues ya me explicará cómo. Yo con esta imagen lo único que puedo decir es que es invierno y que es más o menos a media tarde…

A.: ¿Cómo lo sabe?

L.: Es invierno… bueno, voy a ser más preciso: es invierno en el hemisferio norte porque en el Polo Norte es noche perpetua. Y es más o menos a media tarde porque veo que ya es de noche en Turquía, así que en dos o tres horas se hará de noche en España.

A.: No está mal. Mucha gente no se habría dado cuenta de lo de la noche perpetua en el Polo…

L.: Eso es fácil, porque las distintas longitudes (es decir más o menos a la izquierda o la derecha en el mapa) corresponden a horas distintas, y aquí se ve que para todas las posiciones el Polo Norte está en oscuridad.

A.: Pero con eso que ha dicho ya puede precisar más: la extensión completa del mapa en horizontal son 24 horas, así que podemos ver cuantos píxeles corresponden a una hora. El tamaño de la imagen es 605×301, así que si 24 horas son 605 píxeles, 1 hora son 25,2 píxeles.

L.: Ya veo. Eso me sirve para saber diferencias de horas: por ejemplo, voy a mirar cuantos píxeles hay entre Estambul y Madrid… unos 54… dividiendo entre 25,2, sale 2,14: eso serían dos horas y diez minutos de diferencia. Yo había dicho a ojo dos o tres horas, así que no estaba mal, pero veo que se puede hacer con mucha más precisión. Lo que pasa es que esto me sirve para calcular diferencias de hora entre dos lugares, no la hora que es en un sitio concreto.

A.: No se crea: hay una manera de saberlo. Le doy una pista: ¿En qué sitio sería mediodía?

L.: Pues en el punto medio de la zona en la que es de día, claro. En el mapa quedaría más o menos en el Atlántico… bueno, podríamos decir que en el extremo este de Venezuela.

A.:¡Pues con eso ya puede calcular la hora!

L.:¡Claro: ahí son las doce del mediodía! Voy a ver la distancia en píxeles… Me salen justo 100, o sea que la distancia en horas sería 100/25,2, casi cuatro: en Madrid son las 4 de la tarde, hora solar.

A.:¿Y en Estambul?

L.: Hombre, pues unas dos horas más, hemos dicho: las 6 de la tarde, más o menos.

A.: Fíjese que ahí se está poniendo el Sol… Como son horas solares, si se pone a las 6 de la tarde significa que salió a las 6 de la mañana, así que el día ha durado 12 horas.

L.: Bueno, eso no tiene nada de raro, ¿no?

A.: No digo que sea raro, pero fíjese que si el día es igual de largo que la noche, es que estamos en el equinoccio, y usted me dijo que era invierno, ¿no?

L.: Ya estamos buscando problemas… Espere que lo piense. En el equinoccio, la noche y el día son igual de largos en todo el planeta, eso seguro. Pero aquí se ve que las noches son un poco más largas que los días en el hemisferio norte, así que no hay duda de que todavía no es el equinoccio. O para ser más precisos, que estamos en un día entre el solsticio de invierno y el equinoccio. Pero hay dos equinoccios, más o menos el 20 de marzo y el 20 de septiembre. O sea que estamos antes del 20 de marzo y después del 20 de septiembre. Vale, rectifico: puede que no sea invierno, también podría ser otoño.

A.: Pero ¿entonces no estamos en el equinoccio?¿Y por qué en Estambul el día dura doce horas entonces?

L.: Y dale… A ver, esto es un poco aproximado… quizá he medido los píxeles un poco mal. Y, mire, la línea que separa la noche el día es casi vertical salvo cerca del Polo. Eso significa que en casi todas las latitudes la duración del día y la noche es muy parecida, pero desde luego no lo es cerca de los Polos, y desde luego en el Polo Norte es noche perpetua. Supongo que lo que pasa es que no estamos en el equinoccio pero falta muy poco…

A.: Bueno, veo que al final me va a decir el día y la hora exacta…

L.: Pues sí, me voy a atrever. Apuesto a que el mapa corresponde más o menos al 10 de marzo o el 1 de octubre, y que son las cuatro de la tarde, hora solar. ¿Acierto?

A.: Bueno, lo mejor es que lo mire usted mismo en esta web: http://www.skyviewcafe.com. Busque la pestaña “map” y juegue con ella… pero no olvide que que el horario oficial en España va adelantado una hora o dos respecto del solar (según estemos en el “horario de invierno” o en el “horario de verano”, respectivamente).

L.: Ya me podía dar la respuesta directamente… y encima tengo que actualizar el java para que funcione. En fin, que le vamos a hacer.

 

¿No será usted aristotélico sin saberlo? (y II)

Monsieur Jourdain, el burgués gentilhombre de Moliere, se quedó muy sorprendido al saber que hablaba en prosa: seguramente pensaba que con ese nombre la “prosa” debía ser un género literario exótico, y no la manera de hablar común y corriente.

No hace falta saber qué es la prosa para hablar en prosa. Y no hace falta saber quién fue Aristóteles para pensar aristotélicamente, porque resulta que es la forma de pensar común y corriente.

En la clase de física nos dicen que para que un cuerpo se mueva no hace falta que actúe ninguna fuerza sobre él: es la primera ley de Newton. Y que si actúa una fuerza sobre él, lo que hace es acelerarlo: segunda ley de Newton. Esto puede parecer bien sobre el papel, pero no casa con la realidad. En el supermercado nos pasamos la tarde empujando el carro… y no vemos que se acelere como dice Newton. Imaginemos un carro de 40 kg, al que empujamos con una fuerza de sólo 10 Nw (la necesaria para sostener un cartón de un litro de leche). La aceleración según Newton sería F/m=10/40=0.25 m/s2, lo que significa que en media hora (1800 s) tendríamos una velocidad de 1800·0.25=450 m/s: ¡habríamos roto la barrera del sonido!

Lo que experimentamos en el supermercado, y prácticamente en todas partes, no se corresponde con la física de Newton sino con la de Aristóteles, que decía que la acción de una fuerza constante produce una velocidad constante. Con nuestros 10 Nw de fuerza mantenemos el carrito a una cierta velocidad, y si empujamos más fuerte, va más deprisa. Nuestra impresión es que la fuerza es proporcional a la velocidad que se consigue.

¿Por qué no superan la velocidad del sonido al cabo de un rato largo?

Vemos así que, en primera aproximación, la física de Aristóteles se parece a la de Newton poniendo “velocidad” donde él pone “aceleración”. Podríamos incluso formular dos leyes de la dinámica de Aristóteles, análogas a las de Newton:

  • Un cuerpo sobre el que no actúa una fuerza permanece en reposo (velocidad=0).
  • Un cuerpo sobre el que actúa una fuerza de mueve con una velocidad proporcional a esa fuerza.

(Aristóteles añadía a la segunda ley el detalle de que para que un cuerpo empiece a moverse, la fuerza que actúe sobre él debe superar un cierto valor umbral, “porque si no fuera así, un hombre podría mover un barco, sólo que con una velocidad extremadamente pequeña”).

Las leyes de Aristóteles no sólo explican muy bien nuestra experiencia empujando el carro del supermercado, sino muchas otras: cuando corremos, nuestro esfuerzo parece, al menos dentro de unos límites, proporcional a la velocidad constante que alcanzamos; conduciendo, el coche va a una velocidad constante que parece proporcional a la potencia que desarrolla el motor, etc. Lo que nunca vemos es que con un esfuerzo o potencia constante vayamos cada vez más y más deprisa. Para acelerar el coche, hay que pisarle. Y por mucho que le pisemos durante mucho tiempo, no rompemos la barrera del sonido: necesitaríamos más potencia, de acuerdo con la idea de que la velocidad es proporcional a la fuerza.

Aunque no hayamos formulado conscientemente estas experiencias y nadie nos haya hablado de las leyes de Aristóteles, sino, al contrario, de las de Newton, lo cierto es que hemos interiorizado la física aristotélica porque así es como funciona el mundo en nuestra experiencia cotidiana: con la “velocidad” haciendo lo que Newton dice que hace la “aceleración”.  Y así llegamos a la pregunta de nuestro test de aristotelismo, que reproduzco aquí ya con los resultados (para las 81 respuestas que había en el momento de escribir esto):

Un balón es lanzado verticalmente hacia arriba con velocidad inicial de 5 m/s. En su posición más alta, el balón…

  1. Tiene aceleración cero [17%]
  2. Tiene una aceleración de 9.8 m/s2 hacia abajo [58%]
  3. Tiene una aceleración de 9.8 m/s2 hacia arriba [0%]
  4. Tiene una aceleración instantánea de 0, que rápidamente pasa a ser 9.8 m/s2 [25%]
  5. Cambia su aceleración de 9.8 m/s2 hacia arriba a 9.8 m/s2 hacia abajo [0%]

La respuesta correcta (newtoniana) es la 2: el balón está sometido a la aceleración de la gravedad, que vale, para todos los objetos, 9.8 m/s2 hacia abajo, independientemente de su masa, estado de movimiento, etc.

La respuesta 3 es absurda, así que no es extraño que no haya cosechado ningún voto. Las otras tres opciones, sin embargo, son más interesantes. La velocidad del balón vale instantáneamente cero en el punto más alto de la trayectoria, donde cambia de sentido. Así que las opciones 1, 4 y 5 (salvo los valores numéricos) serían correctas o casi correctas si cambiáramos “aceleración” por “velocidad”, como tendería a hacer un aristotélico. Sumando el 17% de la opción (1) y el 25% la opción (4), alcanzamos un respetable 42% de respuestas aristotélicas.

Quizá lo más curioso de este resultado es que es casi idéntico al que obtuve cuando hace tres años planteé la misma pregunta a los alumnos de primero de ingeniería mecánica en el primer día de curso. Las respuestas (para una muestra de 99) fueron así: 1=14%, 2=54%, 3=0%, 4=27%, 5=5%: un 46% de aristotélicos.

En resumen: entre los alumnos que empiezan una carrera de ingeniería y entre los inteligentes lectores de este blog, la física aristotélica sigue disputándole la primacía a la física newtoniana, a pesar de que sin duda ambos grupos han estudiado más de un curso de mecánica. No me cabe duda de cuál sería el resultado si preguntáramos a un público sin estudios científicos.

Después de más de dos mil trescientos años y de un número incalculable de planes de estudio, Aristóteles sigue vivo.

¿No será usted aristotélico sin saberlo? (I)

Ahora tiene la ocasión de comprobarlo con este sencillo test. Elija la respuesta correcta (y no se lo piense demasiado, que es muy fácil):

La solución en los comentarios… cuando pasen unos días.

Aristóteles y el manga (etcétera)

Decía A.N. Whitehead que toda la filosofía occidental es una serie de notas a pie de página a Platón. Análogamente, podríamos decir que toda la ciencia occidental ha sido un comentario a Aristóteles. Entre ambas afirmaciones, sin embargo, hay un matiz importante: el tiempo del verbo. En la ciencia, hablamos en pasado. La física dejó de ser un comentario a Aristóteles a partir de Galileo, la biología desde Darwin, la medicina, quizá, desde Pasteur…

Pero Aristóteles sigue mucho más vivo de lo que queremos creer. Por ejemplo, en nuestro vocabulario: cuando hablamos de que alguien tiene un temperamento flemático o colérico, estamos manejando, sin saberlo, conceptos aristotélicos.

La idea original es que los cuatro humores (sangre, flema, bilis amarilla y bilis negra), que son el trasunto en el cuerpo humano de los cuatro elementos que forman el mundo sublunar (respectivamente: aire, agua, fuego y tierra), tienen en cada persona una proporción característica: su temperamento. Según el predominio de uno u otro humor, tenemos personas sanguíneas, flemáticas, coléricas (bilis se dice kholé en griego) o melancólicas (melaina significa negra en griego, es la misma raíz de la que viene melanina: melancolía es bilis negra). Si hay un desequilibrio en la proporción de los humores, se manifiesta como enfermedad. Para recuperar la salud, hay que recuperar el equilibrio de los humores, lo que se consigue cambiando la dieta y a veces, con remedios más drásticos como las famosas sangrías.

El caso es que esta teoría “humorística” de la personalidad, lejos de estar olvidada, parece que goza de buena salud. Ayer mismo me he encontrado esta página en la que, sin mencionar a Aristóteles para nada, se hace una minuciosa exposición de los cuatro temperamentos… ¡con vistas a escribir historias manga! Incluso hay un bonito diagrama que no me resisto a copiar aquí:

No es la única. Aquí hay otra minuciosa exposición, esta vez en relación a los juegos de rol, clasificando a demás a muchos héroes de ficción como coléricos, sanguíneos, melancólicos o flemáticos. Pero ojo: el autor confunde la correspondencia entre humores y elementos. Lo correcto es: flema = agua / sangre = aire / fuego = bilis amarilla / tierra = bilis negra, como se muestra aquí:

En realidad, todos somos aristotélicos intuitivos. Lo veremos en el próximo post.

El interferómetro de Michelson: de la Relatividad Especial al escándalo Volkswagen

¿Tiene algo que ver la teoría de la Relatividad Especial de Einstein con el reciente escándalo de las emisiones contaminantes de los vehículos Volkswagen?

albert_einstein_head 640px-vw_golf_tdi_clean_diesel_was_2010_89831

En la ciencia y la técnica todo está relacionado, pero en este caso el vínculo es más próximo de lo que pudiera pensarse. Se trata de un curioso y sencillo dispositivo: el interferómetro de Michelson. Su historia es un interesante ejemplo de las imprevisibles relaciones entre ciencia y tecnología. La cuento aquí, en un artículo en el último número de la revista e-medida, publicada por el Centro Nacional de Metrología.

Curiosidad, divino tesoro

Para salir con buen pie de las largas vacaciones de Navidad, les recomiendo un artículo de Laura Chaparro en Sinc sobre la auténtica materia prima con la que se hace la ciencia: la curiosidad. Además de mis modestas opiniones sobre la curiosidad en la escuela, pueden encontrar las de personajes mucho más egregios, Einstein sin ir más lejos, que dijo en  1955: “Lo importante es no dejar de hacer preguntas […] No perder jamás la bendita curiosidad”.

¿No les entran ganas del leerlo?

¡Feliz 2016 a todos!