El cocodrilo reconsiderado

Terminamos el post anterior diciendo que el problema del cocodrilo, bien entendido, tiene también su interés desde el punto de vista físico. Vamos a ello.

Como vimos, en el enunciado nos dicen que el tiempo para ir de C (cocodrilo) a Z (cebra) por el camino marcado es:

t(x) = 5 \sqrt{36 + x^2} + 4(20-x)

Cocodrilo_1

¿De dónde sale esta fórmula? Nos la dan gentilmente, así que para resolver el problema no hace falta preguntárselo: la aceptamos y punto. Pero la actitud científica consiste precisamente en no limitarse a aceptar las cosas y punto. Así que, ¿de dónde sale la fórmula?

Si el cocodrilo va a velocidad constante v_A por el agua y v_T por tierra, y las distancias respectivas que recorre son d_A y  d_T, el tiempo que tardará será:

t=\frac{d_A}{v_A} + \frac{d_T}{v_T}

Pero a la vista del dibujo, y usando el teorema de Pitágoras para calcular d_A, tenemos que el tiempo, en función de la distancia x, es:

t(x)=\frac{\sqrt{x^2 + y^2}}{v_A} + \frac{20-x}{v_T}

Y basta con comparar con la ecuación del enunciado para ver que y=6, v_A=1/5, v_T=1/4. Las unidades de la distancia son metros y las de las velocidades, metros por décima de segundo, así que tenemos que v_A= 2 m/s y v_T = 2,5 m/s.

Ahora empezamos a entender dónde está la gracia del problema. Si el cocodrilo fuera más rápido por agua que por tierra, estaría muy claro lo que tiene que hacer: ir en línea recta. Pero como va más rápido por tierra, puede interesarle dar un pequeño rodeo, recorriendo parte del trayecto por la orilla opuesta: la longitud total recorrida será mayor, pero  puede que el tiempo sea menor. Y ahora no es nada evidente cómo tiene que dar el rodeo: tenemos un problema de optimización.

Lo mismo ocurriría en el caso más general de que la cebra no estuviera a la orilla sino más hacia el interior. Este caso es completamente análogo al del clásico problema del socorrista que ve desde la playa que un bañista se está ahogando.

El socorrista (S) quiere alcanzar al bañista que se ahoga (B) en el menor tiempo posible.

El socorrista (S) quiere alcanzar al bañista que se ahoga (B) en el menor tiempo posible. Los ángulos los necesitaremos luego. De momento, llamamos con el subíndice 1 a todo lo que está a la derecha y con 2 a todo lo que está a la izquierda.

¿Qué tiene que hacer para llegar lo antes posible? Teniendo en cuenta que el socorrista, como el cocodrilo, corre más deprisa que nada, la mejor estrategia no será ir en línea recta. Conviene correr por tierra el todo lo posible… o quizá no: si corremos hasta p’, enfrente del bañista, probablemente estemos alargando demasiado nuestro recorrido, alejándonos demasiado de la recta. Seguramente lo mejor será un compromiso entre velocidad rápida y recorrido corto, un punto como p, que dependerá de la proporción entre las velocidades del socorrista cuando corre y cuando nada.

Cuál es ese compromiso no es nada evidente, pero aquí entra en juego la magia del cálculo diferencial, que nos dice que el tiempo mínimo se consigue cuando la derivada de ese tiempo es cero. Con más precisión: tenemos que escribir una fórmula que nos de t en función de la posición de p (es decir, en función de x1), y el valor de  x1 que haga que la derivada sea cero será el valor para el que t es mínimo.

¡Manos a la obra! A la vista del esquema está claro que:

t=\frac{\sqrt{x_1^2 + y_1^2}}{v_1} + \frac{\sqrt{x_2^2 + y_2^2}}{v_2}=\frac{\sqrt{x_1^2 + y_1^2}}{v_1} + \frac{\sqrt{(h-x_1)^2 + y_2^2}}{v_2}

ya que x_2 = h-x_1. Derivando e igualando a cero:

\frac{d t}{d x_1} = \frac{x_1}{v_1 \sqrt{x_1^2 +y_1^2}} - \frac{h- x_1}{v_2 \sqrt{(h-x_1)^2 +y_2^2}} =0

y sustituyendo ahora h-x_1=x_2,

\frac{x_1}{v_1 \sqrt{x_1^2 +y_1^2}} = \frac{x_2}{v_2 \sqrt{x_2^2 +y_2^2}}

Pero
\frac{x_1}{\sqrt{x_1^2 +y_1^2}}= sen \theta_1 y \frac{x_2}{\sqrt{x_2^2 +y_2^2}}= sen \theta_2

así que la condición que cumple el punto p podemos ponerla de esta manera:

\frac{sen \theta_1}{v_1} = \frac{sen \theta_2}{v_2}

¡Un resultado realmente sencillo! Pero lo mejor de todo es que es un resultado muy conocido: ¡es justamente la ley de Snell de la refracción de la luz! El camino que debería recorrer el socorrista es el camino que recorre la luz cuando atraviesa la intercara entre dos medios en los que se propaga a diferente velocidad.

Fue el genial Pierre de Fermat (el del último teorema) quien estableció que…”El trayecto seguido por la luz al propagarse de un punto a otro es tal que el tiempo empleado en recorrerlo es un mínimo“. Una idea de una suprema elegancia, de la que habría mucho que hablar… pero ya basta por hoy: no dirán que no nos ha llevado lejos el cocodrilo, ¿no?

*

Propina: El lector que no se haya aburrido todavía puede comprobar por sí mismo que el caso del cocodrilo (que está situado justo en la orilla, es decir, en la intercara entre los dos medios) se corresponde justamente con lo que en óptica se llama reflexión total, en concreto al caso de ángulo crítico. Curioso que la caza de cebras, o el rescate de bañistas, resulten ser análogos a la óptica de los prismas, ¿verdad?

Anuncios

  1. Germán Ros

    Muy bueno!! La analogía del socorrista para entender la ley de la refracción como consecuencia del tiempo mínimo siempre me ha parecido magnífica. Un nuevo post muy útil para mis alumnos. Gracias

  2. rober79

    Hola, Buenos dias. Hay que ver como dos cosas en apariencia que no tienen nada en común, tienen mucho en común con la profundización del problema; y luego se ve que las gráficas tiene relación con los fenómenos de refracción, reflexión etc… ,en especial con la ley de snell y Descartes en el segundo caso. Muy entretenido y didáctico como siempre. Sin embargo tengo una pequeñísima confusión en el párrafo 7 y estuve buscando información, ¿los cocodrilos pueden “correr” por el agua? suponiendo que el verbo solo se utilize para mamíferos; disculpe por esta duda, quizá en españa se utilize esa expresión o quizá no se algo sobre la fisiología del cocodrilo. Muchas gracias por sus posteos. Hasta luego.

  3. JuanMS

    Hola, rober79: no le busques tres pies al cocodrilo, escribí “correr” sin pensarlo mucho pero lo voy a corregir. Me alegro de que te gusten los posts.

    • rober79

      Hola, muy buenos dias; solo fue una pequeña digresión y duda a la vez…de todas maneras gracias por la respuesta y por su sentido del humor agradable… que tenga un buen día

  4. Sergio B.

    Buenos días Germán. Excelente observación. Llegue a tu blog mediante Gaussianos, en donde propuse una solución similar sin tanto rigor matemático, sólo plasmaba la Ley de Snell basándome en la diferencia de los índices de refracción entre el agua y el aire para el caso de RTI (reflexión total interna). Me gustó mucho el análisis completo y detallado que realizaste. Voy a dedicarle un tiempo a echarle un ojo a tu blog. Un gran saludo desde Argentina

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s