Chicos bailarines y turbas violentas

Las semanas pasadas hemos hablado en el curso Ciencia para pensar mejor sobre las ilusiones cognitivas (como los efectos halo y ancla, el sesgo de representatividad o el de disponibilidad). Todos estos son efectos que ocurren a nivel individual y que contribuyen a que a menudo nos comportemos de una manera que no es precisamente racional.

Sin embargo, somos animales sociales, y lo que ocurre en nuestro entorno nos influye mucho, así que es de esperar que la dimensión colectiva de nuestro comportamiento también tenga componentes irracionales… y así es. De hecho, estos efectos colectivos son aún más dramáticos que los individuales.

Hay un vídeo bastante conocido en el que vemos cómo un niño que se pone a bailar, al principio solo, termina por arrastrar a una multitud:

En el audio se presenta esto como un ejemplo de cómo funciona el liderazgo, y se resalta lo importante que es conseguir un primer seguidor.

Es una manera de verlo en positivo… pero a mí me parece más apropiada una interpretación más siniestra. Lo que estamos viendo tiene justamente el mismo mecanismo de un linchamiento: la masa puede ponerse a bailar, sí, pero igualmente puede ponerse a tirar piedras a un esclavo negro o a asaltar el Parlament. La dinámica la estudió un célebre sociólogo, M. Granovetter (al menos, debería ser célebre en España, ya que lo cita la tesis doctoral más leída de la historia: la de Pedro Sánchez… aunque con un ligero error 😉 )

Supongamos que una multitud rodea el Parlamento. ¿Qué es lo que determina que la manifestación se mantenga pacífica o degenere en un tumulto violento?  Granovetter señala algo de sentido común: que cada individuo se anime a pasar a la violencia está condicionado por lo que hacen los demás. La mayoría no están dispuestos a lanzar la primera piedra, pero si otros lo han hecho, es mucho más sencillo animarse a hacerlo. Y cuantos más lo estén haciendo, más sencillo resulta unirse a ellos. De hecho, es razonable postular que para cada individuo i hay un umbral N(i), de manera que si el número de personas tirando piedras en la multitud es mayor o igual que N(i), el individuo i se va a poner a tirar piedras también. Este umbral es una medida de lo indignado que está el individuo i: cuando más bajo sea el umbral, mayor es su enfado, y necesita menos para pasar a la violencia.

Todo esto es muy razonable, pero lleva a efectos sumamente irracionales, porque el comportamiento de la masa depende de manera muy poco intuitiva de la distribución de los umbrales N(i). Supongamos que hay 100 manifestantes, y que en todos el umbral es 1; es decir, todos están enfadadísimos, de manera que basta que vean a una sola persona ponerse a apedrear el Parlamento para unirse. A pesar de eso, la manifestación no degenerará en violencia porque nadie tirará la primera piedra: quien tira la primera piedra tiene que tener, por definición, un umbral de 0. Bastaría, sin embargo, que uno estuviera un poco más indignado y tuviera el umbral de 0 para desatar el caos: todos se pondrían inmediatamente a apedrear el Parlamento. Una pequeña diferencia puede tener efectos dramáticos.

Peor aún. Supongamos dos multitudes distintas, siempre de 100 personas. La primera es la que vimos antes: todos tienen un umbral de 1. La segunda tiene una indignación media mucho menor: sus valores de N(i) son 99, 98… y así sucesivamente hasta …3,2,1,0. La primera, como hemos visto se congregaría ante el Parlamento sin que llegara a estallar la violencia. En el segundo caso, sin embargo, tenemos un individuo con N=0, que se va a poner a tirar piedras aunque nadie le respalde. Pero también otro con N=1, que al ver al primero, va a pasar a la acción, y otro con N=2, que al ver a estos dos se va a unir a ellos. Y así sucesivamente: la transición a la violencia se va a propagar como un reguero de pólvora, y en poco tiempo tendremos a una turba enfervorecida y una lluvia de adoquines sobre la sede de la soberanía popular… y sin embargo, la indignación era mucho menor que en el primer caso.  Por otra parte, hubiera bastado que nadie tuviera N=1 (es decir, que la distribución de umbrales acabara en …3,2,2,0) para que el primer energúmeno violento se quedara sólo y se cortara la intifada.

En definitiva: a diferencia de los individuos, que sonirracionales pero relativamente previsibles (predeciblemente irracionales, como dice Dan Ariely) en las multitudes diferencias mínimas pueden dar lugar a comportamientos radicalmente diferentes. Para bien, quizá (y todo el mundo se pone a bailar muy contento), pero, me temo que más frecuentemente, para mal.

*

Una recomendación: una página excelente para aprender jugando sobre el comportamiento de las multitudes (y cómo este depende enormemente de las redes de relaciones entre los individuos) es ésta. Muy recomendable.

Anuncios

  1. Angel Moreno

    Hoy estoy respondón, amigo Juan

    De acuerdo en todo lo que has planteado, pero hay una diferencia en la ejecución a favor de que la multitud con umbrales incrementales tendrá un efecto menos agresivo contra el sufrido Parlamento. Me explico, estadísticamente y seguramente con muchas imprecisiones, porque no es mi fuerte.

    En la turba de 100 personas en la que todos tienen umbral 1, basta con que haya una anomalía entre 100 (es decir, que uno pase a tener umbral 0), para que todos tiren su piedra. Conclusión, 100 piedras contra el pobre edificio. Si alguno de ellos finalmente no tira la piedra, el resto seguirá haciéndolo.

    En la turba de 100 personas con umbral incremental (0, 1, 2, 3, etc), empezará un lanzamiento de piedras, pero en el momento en que alguno de ellos no tire su piedra, el resto de piedras ya no se lanzarán, por lo que el número total de piedras será estadísticamente menor.

    Un abrazo

    Ángel

  2. JuanMS

    Pues tienes razón… se nota que piensas como un ingeniero.

    Aunque con la distribución uniforme de umbrales 1 en principio no pasa nada, y con la incremental se desata la violencia, es cierto que los dos casos son muy poco “robustos” ante las pequeñas perturbaciones (como decimos los físicos): en ambos casos, basta cambiar un umbral para que el resultado sea el contrario. No sé si Granovetter ha considerado esto, pero es un punto interesante: habría que hacer un estudio con distribuciones de umbrales “borrosas” en las que en vez de tener cada individuo un umbral fijo tuviera varios, con cierta probabilidad cada uno…

    Lo que no cambia es a partir del comportamiento de una multitud no podemos sacar conclusiones sobre lo que “realmente” piensan sus miembros (en este caso, sobre su grado de indignación)… Así que los medios deberían ser muy cautelosos para sacar conclusiones a partir de manifestaciones, etc… pero claro, eso va a ser mucho pedir.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s