Categoría: Física

Hawking: lejos de Einstein, cerca del pueblo

Me permito copiar el magnífico titular de Mario Viciosa en su artículo de El Independiente, porque es el mejor resumen que he encontrado en la prensa sobre Stephen Hawking, que como todo el mundo sabe, ha fallecido hoy 14 de marzo, precisamente el día de pi.

Mario me pidió mi opinión sobre Hawking, y la resumió así en el artículo:

Hawking no estaría en el primer nivel, con Newton, Einstein, Galileo o Faraday, entre otras figuras clave. “Estaría en un cuarto nivel, alguien que hizo unos descubrimientos brillantes en un campo concreto donde quizá marcó un punto de inflexión. Lo que ha publicado desde los años setenta ha sido bastante especulativo y no ha tenido confirmación”, por eso no le han dado el Nobel, aunque sí el Wolf o la Medalla Copley. Está lejos de “ser un Einstein”, pero revitalizó su Relatividad general

Leyéndolo, veo que necesitaría alguna aclaración eso del “cuarto nivel”. Estaba aludiendo, implícitamente, a la Escala de Landau, con la que el genial físico soviético clasificaba a sus colegas. En el nivel más alto brillaban Newton y Einstein; en el segundo (el “nivel 1” para Landau, que empezaba a contar por el cero) estaban Bohr, Dirac, Schrödinger… . Un piso más abajo se colocaba Landau a sí mismo. Y en el piso inmediatamente inferior, el cuarto nivel para mí, es donde situaba yo a Hawking.

Un par de enlaces (en inglés) para quien quiera aprender algo, en vez de aturdirse con el habitual ruido mediático:

  • Hawking es una celebridad, pero ¿qué opinan los físicos sobre él? Respuestas interesantes en Quora. Coincido con la primera opinión, la más votada.
  • Una nota necrológica magistral de un viejo colega suyo: nada menos que el gran Roger Penrose.
Anuncios

Dulce Newtondad

¿Quién ha sido la persona más influyente de la historia? Seguramente muchos dirán que Jesucristo (yo me incluyo). Sin embargo, hay voces autorizadas, como el astrofísico Michael Hart, que no están de acuerdo: en su célebre lista de 1978, el número uno es Mahoma… a pesar de que por entonces Jomeini aún no había llegado al poder y Bin Laden era un anónimo estudiante de ingeniería. Hart argumentaba que, siendo el cristianismo la religión más extendida y que más ha marcado a la humanidad, no se puede considerar a Jesucristo su único fundador, porque San Pablo tuvo un papel decisivo, a diferencia del caso del Islam, creado íntegramente por Mahoma. Por eso coloca a Jesucristo tercero en la lista, y a Pablo de Tarso en el sexto lugar, tras Buda (4ª posición) y Confucio (en el 5º puesto).

Polémicas aparte, el lector atento se habrá dado cuenta de una cosa: hemos mencionado al primero, el tercero, el cuarto y el quinto de la lista de Hart, pero ¿quién es el segundo? Ese mismo lector seguro que sabe ya responder a la pregunta: sólo puede ser Isaac Newton.

sir_isaac_newton_281643-172729

Y en efecto, puede haber discusión para  elegir al personaje más importante de la historia de las religiones, pero por suerte eso no pasa con la historia de la ciencia: nadie bien informado puede negar el puesto de honor a sir Isaac Newton.

Otro Isaac, el buen doctor Asimov, lo explicaba en su libro Cien preguntas básicas sobre la ciencia:

¿Quién fue, en su opinión, el científico más grande que jamás existió?

Si la pregunta fuese “¿Quién fue el segundo científico más grande?” sería imposible de contestar. Hay por lo menos una docena de nombres que, en mi opinión, pueden aspirar a esa segunda plaza. Entre ellos figurarían, por ejemplo, Albert Einstein, Ernest Rutherford, Niels Bohr, Louis Pasteur, Charles Darwin, Galileo Galilei, James Clerk Maxwell, Arquímedes y otros. (…) Pero como la pregunta es “¿Quién es el más grande?”, no hay problema alguno. En mi opinión, la mayoría de los historiadores de la ciencia no dudarían en afirmar que Isaac Newton fue el talento científico más grande que jamás haya visto el mundo. Tenía sus faltas, vive el cielo: era un mal conferenciante, tenía algo de cobarde moral y de llorón autocompasivo y de vez en cuando era víctima de serias depresiones. Pero como científico no tenía igual.

Decir que “tenía sus faltas” es muy amable para con Newton (¡por algo llamaban a Asimov “el buen doctor”!): en realidad sir Isaac era un personaje sumamente antipático en lo personal, que se peleó con todos sus rivales científicos, dirigió con especial crueldad la Casa de la Moneda (encargándose personalmente de que se ahorcase a los falsificadores) y al que su ayuda de cámara sólo vio sonreír una vez en décadas. Un mal bicho, en resumen… pero el mayor genio científico de la historia.

Pero ¿qué tiene que ver Newton con la Navidad? Aquí lo explica Sheldon Cooper…

…pero si quieren saber más, les recomendó el podcast de El Independiente en el que converso con Mario Viciosa sobre el que es, sin sombra de duda, el mayor científico de la historia.

[Mas podcasts de De Tales a Newton aquí]

Confesiones de un profesor de física: Eric Mazur

Esta conferencia de Eric Mazur debería hacernos pensar a todos los profesores de física. No es un gurú pedagógico, sino uno de los nuestros.

(Sólo tiene los subtítulos automáticos, pero se entiende muy bien su inglés.)

Muchas cosas de las que dice las hemos vivido todos. Y otras las sospechábamos. Por ejemplo, cuando explica (en t=13’13”) el resultado de un estudio que comparó el aprendizaje de alumnos de distintos profesores, clasificados por su competencia:

¿And you know what? No difference. No difference between the award-winning teacher and the winner who scores extremely low at the end of the semester. In other words, it does not make any difference what we do in front of our students: they learn next to nothing. Well, I felt challenged.

Este tipo de cosas le llevaron a concebir la peer instruction (enseñanza por pares, aquí su web). Si me lo contara un gurú pedagógico desconfiaría, pero a Eric Mazur sí le creo.

(Con mi agradecimiento a Pedro Ramos que me lo descubrió en un comentario)

Emulando a Galileo… con el móvil.

Hace 400 años hizo falta un genio como Galileo para demostrar la ley de caída de los cuerpos. Tuvo que superar muchas dificultades, algunas conceptuales (había que dejar de ver el mundo con los ojos de Aristóteles) y otras experimentales (no es nada fácil tomar medidas de la caída libre de un cuerpo: ¡todo ocurre demasiado deprisa!).

Para retardar la caída, Galileo tuvo la idea de usar una bolita rodando por un plano inclinado. Aun así, no podía medir velocidades, y ni siquiera valores absolutos de los tiempos, sólo medir (más o menos) los espacios recorridos en tiempos iguales. Consiguió demostrar, de todos modos, que el espacio recorrido aumenta proporcionalmente al cuadrado del tiempo, y que esto significa que la velocidad aumenta en proporción al tiempo. Es decir, que se trata de lo que hoy llamamos un movimiento uniformemente acelerado.

Hemos progresado mucho desde los tiempos de Galileo. En el bolsillo llevamos un instrumento científico de una precisión con la que él no pudo soñar: el teléfono móvil.  ¿Podríamos usarlo para demostrar lo que a él le costó tanto esfuerzo? La respuesta es que sí, y que ni siquiera necesitamos plano inclinado. Podemos grabar la caída libre de una pelota y verificar que el espacio recorrido aumenta en proporción al cuadrado del tiempo. Y resulta incluso que, con un poco de ingenio, podemos medir casi directamente la velocidad, y comprobar que aumenta en proporción al tiempo. Este es el trabajo que propuse hace ya más de tres meses a los alumnos de 2º de la ESO del PEAC de Madrid Este (ver este post). Ya era hora de que lo contara aquí.

FOTOS EXPERTO_30 ENERO_JUAN MELENDEZ 002

Hemos utilizado el vídeo que ya colgué en su día:

La idea es extraer de la película los fotogramas uno a uno y a partir de ellos, sacar la posición de la pelota en función del tiempo.

El proceso, cuando ya se tienen los fotogramas, se explica en este guión. Pero extraer los fotogramas no es tan sencillo como pudiera parecer. La mayoría de los reproductores de vídeo para PCs no lo permiten, y alguno muy popular que sí lo hace (VLC Media Player) no lo hace bien: se salta fotogramas sin avisar y eso es un desastre para nuestros propósitos. Programas profesionales como Matlab lo hacen perfectamente, pero no están al alcance de cualquiera… Finalmente, encontré la solución con GOM Player, un reproductor de vídeo de software libre que extrae sin ningún problema los fotogramas (se explica en el último apartado del guión).

Una vez que tenemos los fotogramas, ¿cuál es el intervalo de tiempo entre ellos? Para algunos formatos de vídeo, lo podemos saber desde el explorador de Windows: con el botón derecho del ratón, elegimos “propiedades”, la pestaña “detalles” y encontramos, por ejemplo, “Velocidad fotograma: 25 fotogramas/segundo”. Tenemos entonces 1/25 = 0,04 s entre cada fotograma. Pero con otros formatos esa información no aparece, por ejemplo, con archivos mpg como la grabación original que utilicé. En ese caso, GOM Player viene al rescate: en el menú, elegimos “información del archivo que se está reproduciendo” (o hacemos Cntrl+F1) y en “información de archivo” encontramos “Frame Rate”, y el número de fotogramas por segundo (fps).

A partir de aquí, se trata sólo de medir sobre los fotogramas las posiciones de la pelota. Con dos marcas en el fondo de la imagen, separadas una distancia conocida (en nuestro caso, 10 cm), podemos hacer la conversión de píxeles a cm. Para facilitar las cuentas, he creado una hoja de cálculo Excel: Caída libre PEAC.xls, donde introduciendo los datos se hace la conversión a cm y la gráfica que muestra la posición frente al tiempo.

¿Y qué hay de medir directamente la velocidad? Lo podemos hacer porque la pelota sale “movida”: se ve como una mancha alargada, tanto más cuanto más deprisa va, debido a que la cámara obtiene los fotogramas con un cierto tiempo de exposición. Hay un único problema: no sabemos cuál es ese tiempo. En el archivo Excel he hecho una pequeña trampa, estimando el tiempo de exposición a partir de la aceleración (medida del ajuste de las posiciones).

Para quien quiera repetir por sí mismo la toma de datos, a partir de las imágenes de mi vídeo, he dejado los fotogramas ya extraídos aquí. Pero lo mejor es realizar todo el proceso uno mismo, con el móvil que lleva en el bolsillo: ¡Cuánto hubiera dado Galileo por poder hacerlo!

¿No será usted aristotélico sin saberlo? (y II)

Monsieur Jourdain, el burgués gentilhombre de Moliere, se quedó muy sorprendido al saber que hablaba en prosa: seguramente pensaba que con ese nombre la “prosa” debía ser un género literario exótico, y no la manera de hablar común y corriente.

No hace falta saber qué es la prosa para hablar en prosa. Y no hace falta saber quién fue Aristóteles para pensar aristotélicamente, porque resulta que es la forma de pensar común y corriente.

En la clase de física nos dicen que para que un cuerpo se mueva no hace falta que actúe ninguna fuerza sobre él: es la primera ley de Newton. Y que si actúa una fuerza sobre él, lo que hace es acelerarlo: segunda ley de Newton. Esto puede parecer bien sobre el papel, pero no casa con la realidad. En el supermercado nos pasamos la tarde empujando el carro… y no vemos que se acelere como dice Newton. Imaginemos un carro de 40 kg, al que empujamos con una fuerza de sólo 10 Nw (la necesaria para sostener un cartón de un litro de leche). La aceleración según Newton sería F/m=10/40=0.25 m/s2, lo que significa que en media hora (1800 s) tendríamos una velocidad de 1800·0.25=450 m/s: ¡habríamos roto la barrera del sonido!

Lo que experimentamos en el supermercado, y prácticamente en todas partes, no se corresponde con la física de Newton sino con la de Aristóteles, que decía que la acción de una fuerza constante produce una velocidad constante. Con nuestros 10 Nw de fuerza mantenemos el carrito a una cierta velocidad, y si empujamos más fuerte, va más deprisa. Nuestra impresión es que la fuerza es proporcional a la velocidad que se consigue.

¿Por qué no superan la velocidad del sonido al cabo de un rato largo?

Vemos así que, en primera aproximación, la física de Aristóteles se parece a la de Newton poniendo “velocidad” donde él pone “aceleración”. Podríamos incluso formular dos leyes de la dinámica de Aristóteles, análogas a las de Newton:

  • Un cuerpo sobre el que no actúa una fuerza permanece en reposo (velocidad=0).
  • Un cuerpo sobre el que actúa una fuerza de mueve con una velocidad proporcional a esa fuerza.

(Aristóteles añadía a la segunda ley el detalle de que para que un cuerpo empiece a moverse, la fuerza que actúe sobre él debe superar un cierto valor umbral, “porque si no fuera así, un hombre podría mover un barco, sólo que con una velocidad extremadamente pequeña”).

Las leyes de Aristóteles no sólo explican muy bien nuestra experiencia empujando el carro del supermercado, sino muchas otras: cuando corremos, nuestro esfuerzo parece, al menos dentro de unos límites, proporcional a la velocidad constante que alcanzamos; conduciendo, el coche va a una velocidad constante que parece proporcional a la potencia que desarrolla el motor, etc. Lo que nunca vemos es que con un esfuerzo o potencia constante vayamos cada vez más y más deprisa. Para acelerar el coche, hay que pisarle. Y por mucho que le pisemos durante mucho tiempo, no rompemos la barrera del sonido: necesitaríamos más potencia, de acuerdo con la idea de que la velocidad es proporcional a la fuerza.

Aunque no hayamos formulado conscientemente estas experiencias y nadie nos haya hablado de las leyes de Aristóteles, sino, al contrario, de las de Newton, lo cierto es que hemos interiorizado la física aristotélica porque así es como funciona el mundo en nuestra experiencia cotidiana: con la “velocidad” haciendo lo que Newton dice que hace la “aceleración”.  Y así llegamos a la pregunta de nuestro test de aristotelismo, que reproduzco aquí ya con los resultados (para las 81 respuestas que había en el momento de escribir esto):

Un balón es lanzado verticalmente hacia arriba con velocidad inicial de 5 m/s. En su posición más alta, el balón…

  1. Tiene aceleración cero [17%]
  2. Tiene una aceleración de 9.8 m/s2 hacia abajo [58%]
  3. Tiene una aceleración de 9.8 m/s2 hacia arriba [0%]
  4. Tiene una aceleración instantánea de 0, que rápidamente pasa a ser 9.8 m/s2 [25%]
  5. Cambia su aceleración de 9.8 m/s2 hacia arriba a 9.8 m/s2 hacia abajo [0%]

La respuesta correcta (newtoniana) es la 2: el balón está sometido a la aceleración de la gravedad, que vale, para todos los objetos, 9.8 m/s2 hacia abajo, independientemente de su masa, estado de movimiento, etc.

La respuesta 3 es absurda, así que no es extraño que no haya cosechado ningún voto. Las otras tres opciones, sin embargo, son más interesantes. La velocidad del balón vale instantáneamente cero en el punto más alto de la trayectoria, donde cambia de sentido. Así que las opciones 1, 4 y 5 (salvo los valores numéricos) serían correctas o casi correctas si cambiáramos “aceleración” por “velocidad”, como tendería a hacer un aristotélico. Sumando el 17% de la opción (1) y el 25% la opción (4), alcanzamos un respetable 42% de respuestas aristotélicas.

Quizá lo más curioso de este resultado es que es casi idéntico al que obtuve cuando hace tres años planteé la misma pregunta a los alumnos de primero de ingeniería mecánica en el primer día de curso. Las respuestas (para una muestra de 99) fueron así: 1=14%, 2=54%, 3=0%, 4=27%, 5=5%: un 46% de aristotélicos.

En resumen: entre los alumnos que empiezan una carrera de ingeniería y entre los inteligentes lectores de este blog, la física aristotélica sigue disputándole la primacía a la física newtoniana, a pesar de que sin duda ambos grupos han estudiado más de un curso de mecánica. No me cabe duda de cuál sería el resultado si preguntáramos a un público sin estudios científicos.

Después de más de dos mil trescientos años y de un número incalculable de planes de estudio, Aristóteles sigue vivo.

¿No será usted aristotélico sin saberlo? (I)

Ahora tiene la ocasión de comprobarlo con este sencillo test. Elija la respuesta correcta (y no se lo piense demasiado, que es muy fácil):

La solución en los comentarios… cuando pasen unos días.

El cocodrilo reconsiderado

Terminamos el post anterior diciendo que el problema del cocodrilo, bien entendido, tiene también su interés desde el punto de vista físico. Vamos a ello.

Como vimos, en el enunciado nos dicen que el tiempo para ir de C (cocodrilo) a Z (cebra) por el camino marcado es:

t(x) = 5 \sqrt{36 + x^2} + 4(20-x)

Cocodrilo_1

¿De dónde sale esta fórmula? Nos la dan gentilmente, así que para resolver el problema no hace falta preguntárselo: la aceptamos y punto. Pero la actitud científica consiste precisamente en no limitarse a aceptar las cosas y punto. Así que, ¿de dónde sale la fórmula?

Si el cocodrilo va a velocidad constante v_A por el agua y v_T por tierra, y las distancias respectivas que recorre son d_A y  d_T, el tiempo que tardará será:

t=\frac{d_A}{v_A} + \frac{d_T}{v_T}

Pero a la vista del dibujo, y usando el teorema de Pitágoras para calcular d_A, tenemos que el tiempo, en función de la distancia x, es:

t(x)=\frac{\sqrt{x^2 + y^2}}{v_A} + \frac{20-x}{v_T}

Y basta con comparar con la ecuación del enunciado para ver que y=6, v_A=1/5, v_T=1/4. Las unidades de la distancia son metros y las de las velocidades, metros por décima de segundo, así que tenemos que v_A= 2 m/s y v_T = 2,5 m/s.

Ahora empezamos a entender dónde está la gracia del problema. Si el cocodrilo fuera más rápido por agua que por tierra, estaría muy claro lo que tiene que hacer: ir en línea recta. Pero como va más rápido por tierra, puede interesarle dar un pequeño rodeo, recorriendo parte del trayecto por la orilla opuesta: la longitud total recorrida será mayor, pero  puede que el tiempo sea menor. Y ahora no es nada evidente cómo tiene que dar el rodeo: tenemos un problema de optimización.

Lo mismo ocurriría en el caso más general de que la cebra no estuviera a la orilla sino más hacia el interior. Este caso es completamente análogo al del clásico problema del socorrista que ve desde la playa que un bañista se está ahogando.

El socorrista (S) quiere alcanzar al bañista que se ahoga (B) en el menor tiempo posible.

El socorrista (S) quiere alcanzar al bañista que se ahoga (B) en el menor tiempo posible. Los ángulos los necesitaremos luego. De momento, llamamos con el subíndice 1 a todo lo que está a la derecha y con 2 a todo lo que está a la izquierda.

¿Qué tiene que hacer para llegar lo antes posible? Teniendo en cuenta que el socorrista, como el cocodrilo, corre más deprisa que nada, la mejor estrategia no será ir en línea recta. Conviene correr por tierra el todo lo posible… o quizá no: si corremos hasta p’, enfrente del bañista, probablemente estemos alargando demasiado nuestro recorrido, alejándonos demasiado de la recta. Seguramente lo mejor será un compromiso entre velocidad rápida y recorrido corto, un punto como p, que dependerá de la proporción entre las velocidades del socorrista cuando corre y cuando nada.

Cuál es ese compromiso no es nada evidente, pero aquí entra en juego la magia del cálculo diferencial, que nos dice que el tiempo mínimo se consigue cuando la derivada de ese tiempo es cero. Con más precisión: tenemos que escribir una fórmula que nos de t en función de la posición de p (es decir, en función de x1), y el valor de  x1 que haga que la derivada sea cero será el valor para el que t es mínimo.

¡Manos a la obra! A la vista del esquema está claro que:

t=\frac{\sqrt{x_1^2 + y_1^2}}{v_1} + \frac{\sqrt{x_2^2 + y_2^2}}{v_2}=\frac{\sqrt{x_1^2 + y_1^2}}{v_1} + \frac{\sqrt{(h-x_1)^2 + y_2^2}}{v_2}

ya que x_2 = h-x_1. Derivando e igualando a cero:

\frac{d t}{d x_1} = \frac{x_1}{v_1 \sqrt{x_1^2 +y_1^2}} - \frac{h- x_1}{v_2 \sqrt{(h-x_1)^2 +y_2^2}} =0

y sustituyendo ahora h-x_1=x_2,

\frac{x_1}{v_1 \sqrt{x_1^2 +y_1^2}} = \frac{x_2}{v_2 \sqrt{x_2^2 +y_2^2}}

Pero
\frac{x_1}{\sqrt{x_1^2 +y_1^2}}= sen \theta_1 y \frac{x_2}{\sqrt{x_2^2 +y_2^2}}= sen \theta_2

así que la condición que cumple el punto p podemos ponerla de esta manera:

\frac{sen \theta_1}{v_1} = \frac{sen \theta_2}{v_2}

¡Un resultado realmente sencillo! Pero lo mejor de todo es que es un resultado muy conocido: ¡es justamente la ley de Snell de la refracción de la luz! El camino que debería recorrer el socorrista es el camino que recorre la luz cuando atraviesa la intercara entre dos medios en los que se propaga a diferente velocidad.

Fue el genial Pierre de Fermat (el del último teorema) quien estableció que…”El trayecto seguido por la luz al propagarse de un punto a otro es tal que el tiempo empleado en recorrerlo es un mínimo“. Una idea de una suprema elegancia, de la que habría mucho que hablar… pero ya basta por hoy: no dirán que no nos ha llevado lejos el cocodrilo, ¿no?

*

Propina: El lector que no se haya aburrido todavía puede comprobar por sí mismo que el caso del cocodrilo (que está situado justo en la orilla, es decir, en la intercara entre los dos medios) se corresponde justamente con lo que en óptica se llama reflexión total, en concreto al caso de ángulo crítico. Curioso que la caza de cebras, o el rescate de bañistas, resulten ser análogos a la óptica de los prismas, ¿verdad?

¿De verdad es trivial el problema del cocodrilo?

En el post anterior despaché el problema del cocodrilo diciendo que era “una trivialidad” y eso no es del todo justo, por dos razones bien diferentes.

Cocodrilo_enunciado1

La primera es que hay dos cosas en el enunciado que pueden dar lugar a confusión. Una, que el dibujo no está del todo claro: puede entenderse que las distancias se miden desde el cocodrilo, en vez de desde el punto que está enfrente, en la orilla opuesta. Habría sido mejor un esquema más simplificado, como éste:

Cocodrilo_1

Esquema simplificado para el problema del cocodrilo (C) y la cebra (Z). Hemos llamado “y” a la anchura del río.

Otra pega del enunciado es que empieza llamando x a la distancia para la que se minimiza el tiempo…

Cocodrilo_enunciado2

…y a continuación se da una fórmula para el tiempo en la que x es un punto genérico:Cocodrilo_enunciado3

Esto puede inducir a confusión, pero ¿es suficiente para disculpar a los alumnos que encontraron el problema “devastador”? Sólo en parte, porque cualquiera que esté acostumbrado a hacer problemas interpretará estos puntos dudosos de la manera correcta sin dudarlo.

Llegamos aquí a una cuestión importante que suele ignorarse: entender un enunciado no es tan simple como pudiera parecer. Siempre hay muchos convenios implícitos que son obvios para el experto pero no para el novicio. El recién llegado a la física es como Paco Martínez Soria cuando llega a Madrid en “La ciudad no es para mí”. Viene de una cultura diferente y tiene que aprender un montón de cosas que son transparentes para los lugareños, hasta el punto de que éstos no se dan cuenta de que haya nada que aprender y es fácil que lo tomen por tonto.

A la hora de poner un problema, el profesor que sea consciente de esta dificultad “cultural” puede querer explicitar todo al máximo para que no haya malentendidos. Pero entonces el enunciado será demasiado farragoso y algunos no lo entenderán precisamente por eso. El dilema no se puede resolver, pero se debería disolver con el tiempo, según el alumno vaya haciendo suyos los usos y costumbres de la física. Mientras, todo lo que cabe hacer es estar alerta y cuidar al máximo la claridad, pensando y repasando una y otra vez los enunciados, puliéndolos como el poeta pule sus versos.

Siendo como soy consciente de lo difícil que es escribir un buen enunciado, puedo disculpar a los redactores del problema del cocodrilo… pero tengo que reconocer que pudieron hacerlo mejor.

Hay otro sentido en el que el problema del cocodrilo no es trivial, un sentido que tiene más interés desde el punto de vista puramente físico. Pero lo vamos a dejar para el siguiente post.

El dificilísimo problema del cocodrilo

Me acabo de enterar por el ABC del “Complicado problema matemático que hizo llorar a los alumnos escoceses”. Resulta que “un problema matemático dirigido a estudiantes de Escocia que se presentaban a la Scottish Qualifications Authority (SQA), un equivalente a selectividad en España, terminó causando lágrimas de rabia (…) Según informa la BBC, la complejidad de este problema matemático provocó que la nota mínima se tuviera que reducir hasta un 34% en la prueba de mayo, en comparación con el 45% del año anterior. Así, los estudiantes de 16 y 18 años lanzaron sus quejas en redes sociales y se unieron para firmar dos peticiones como protesta contra la excesiva dificultad del problema”.

¿Cuál era el dificilísimo problema? Aquí está:

_85974457_croc

En resumen: como el cocodrilo no va igual de rápido por agua que por tierra, el tiempo que tarda en alcanzar a la cebra depende del punto x en el que sale del río (el dibujo muestra que va en línea recta en cada tramo), y nos dan la ecuación que proporciona el tiempo en función de x.
Pregunta (a): ¿Cuánto tarda el cocodrilo si va sólo por agua?¿Y si nada lo menos posible?
Pregunta (b): ¿Para qué valor de x es el tiempo mínimo?

Estoy seguro de que el lector resolverá el apartado (a) en cosa de un minuto. Y el apartado (b) le llevará, si sabe derivar, cinco como mucho.

¿Cómo es posible entonces que esta trivialidad causara “shock y devastación” en palabras de Logan Fraser, un profesor de academia entrevistado por la BBC? Para ser justos, parece que las quejas se referían a la dificultad global del examen, pero lo cierto es que este problema concreto es que se ha convertido en “viral”, como se dice ahora.

Toda la vida los malos estudiantes se han quejado de que los exámenes son difíciles, y han buscado el apoyo del grupo (mucho más reconfortante y barato que reconocer que uno no sabe)…pero ahora tienen twitter, firman peticiones online, y su caso llega a la BBC.

No pasa nada mientras no les empecemos a hacer caso. Pero, ya que estas tormentas de ignorancia desbordan ahora el vaso de agua, y se desparraman por los medios, ¿podemos aprender algo de ellas?

Que este problema resulte difícil es revelador de muchas cosas. Por un lado, del déficit de comprensión oral. Nuestro Mr Fraser se quejaba de que: “las preguntas fueran tan prolijas, que hubiera que leerlas varias veces para entender exactamente lo que quería decir, sin importar qué fórmula hubiera que utilizar o cómo solucionarlo”. Mi experiencia es que los alumnos españoles llegan a primero de carrera con graves dificultades para entender un texto que sea mínimamente complicado, como el del enunciado del problema (no digamos si el texto va más allá de la mera función enunciativa y tiene matices poéticos o irónicos…, pero vamos a quedarnos en las matemáticas)

Nuestra enseñanza de las ciencias no hace nada por mejorar esta comprensión: al contrario, agrava el problema. Año tras año, los alumnos se entrenan en resolver “problemas tipo” que no exigen pensar. Los enunciados son previsibles, variaciones sobre un mismo tema que siempre apuntan a una fórmula del libro, que lo resuelve todo. El problema de este enunciado es que no es estándar, no es lo que los alumnos esperaban. Y por eso están indignados: llevan años jugando al mismo juego y cuando les examinan ¡les preguntan por un cocodrilo y sale una fórmula rara que no viene en ningún libro!

Por mi parte, el problema me parece muy bien. Y yo le añadiría dos preguntas más:

  • ¿Qué velocidad tiene el cocodrilo cuando va por el agua?¿Y cuando va por tierra?
  • ¿Qué anchura tiene el río?

¿Se animan a responderlas?

Con esto habría quedado un problema más redondo… pero las quejas a lo mejor llegaban ya no sólo hasta la BBC y el ABC, sino hasta la CBS y la NBC…