Etiquetado: estrellas

Cuestión de punto de vista

Todos hemos visto esos bonitos vídeos en time-lapse que resumen unas horas en pocos segundos: las nubes se mueven a toda velocidad, las estrellas giran majestuosamente a lo largo de la noche…

Este gif le da un giro (nunca mejor dicho) inesperado al tema:

El autor simplemente ha estabilizado las estrellas, que aquí están literalmente fijas, y la consecuencia es vemos que la Tierra se mueve: es sólo un cambio de punto de vista, pero es el  que nos llevó de Ptolomeo a Copérnico.

(Lo encontré aquí, parece que la fuente es ésta)

Anuncios

El cielo giratorio… con truco

Ayer me encontré, en este interesante blog, con una foto espectacular:

potd-stars_3252976k

Rebuscando en internet he encontrado más fotos con ese cielo en las páginas del Telegraph y de Televisa.

Espectacular, sí, pero extraña. En el texto que acompaña a las fotos se dice:

Estas imágenes increíbles revelan el movimiento de la tierra a medida que gira sobre su eje a alrededor de 1.040 millas por hora. Las fotos muestran a cientos de diferentes imágenes tomadas del cielo nocturno sobre un trípode fijo durante un largo período de tiempo. Las imágenes fueron hechas en capas, una encima de la otra, para crear una sola imagen que muestra el movimiento de la Tierra a medida que gira sobre su eje, haciendo que parezca como si las estrellas estuvieran creando un gigantesco agujero negro rotatorio.

Toth Gabor Gyula fue quien tomó las fotos, cada una requiere varias horas de la fotografía del paciente en la oscuridad de la noche. Pero el efecto que logra es increíble.

Demasiado increíble, porque lo que debería verse es algo así:

0da17-starrotationnorthstartrailsnightsky

¡Las estrellas no se mueven en espiral sino en círculos! ¿Son auténticas esas imágenes? La cosa me tuvo desconcertado un buen rato, pero finalmente se me ocurrió la explicación. ¿Cuál es el truco que ha usado el fotógrafo?

(Para no quitar el lector el placer de pensar por sí mismo, no daré yo la respuesta. Si nadie da una explicación el los comentarios, lo acabaré contando.. pero dentro de unos días).

El telescopio contra Copérnico (II): Estrellas, telescopios y artefactos

(viene del post anterior)

Lector: ¿O sea que las estrellas no se veían como puntos en el telescopio? Yo estaba convencido de que es imposible distinguir su tamaño…

Autor: Y es verdad: no se puede distinguir su tamaño. Pero aún así, parecen pequeños discos.

L.: ¡Pues no lo entiendo!

A.: Ahora se lo explico, pero tengo que dar un rodeo.

L.: Ya estoy acostumbrado: tendré paciencia.

A.: Como sabe, la luz es una onda, y las ondas se caracterizan porque dan lugar a interferencias. Es decir, que cada vez que dos ondas coinciden en la misma región del espacio, la intensidad de la luz no es simplemente la suma de las intensidades, sino que puede ser mayor que la suma (y se dice que es interferencia constructiva) o menor que la suma (y entonces se llama interferencia destructiva).

L.: Eso lo he oído decir más de una vez, pero si le digo la verdad no lo entiendo mucho. Yo lo que veo es que cuando enciendo dos luces, por ejemplo, los dos haces de luz de los faros de un coche, la intensidad de luz parece más o menos la suma… Vamos, que no veo las famosas interferencias.

A.: Es cierto, pero es que estos efectos de interferencia son bastante sutiles… para empezar dependen mucho de la longitud de onda (es decir, del color). La luz blanca de los faros contiene todos los colores, y para algunos la interferencia sería destructiva mientras que para otros sería constructiva, de manera que el efecto global quedaría muy desdibujado. Pero sobre todo hay otro efecto que destruye las interferencias, y es que la luz  emitida por las fuente “normales”, como el faro de un coche, es lo que se llama “incoherente”.

L.: ¿Y eso qué significa?

A.: Eso quiere decir que si un faro emite luz durante, digamos, un segundo, no es que emita una onda con una duración de un segundo, sino que emite, por ejemplo, mil millones de onditas cada una con una duración de una milmillonésima de segundo. Lo mismo ocurre con el otro faro, de manera que cuando la luz de un faro coincide en la misma región con la luz del otro, y se superponen unas y otras onditas, la interferencia a lo mejor es constructiva durante una milmillonésima de segundo, pero a continuación a lo mejor es destructiva, luego es algo intermedio… y en resumen, el efecto es que se compensan unos casos con los otros y no se aprecia ninguna interferencia.

L.: Pero si las interferencias no se aprecian nunca, ¿qué tienen que ver con lo que discutíamos del tamaño aparente de las estrellas vistas por el telescopio?

A.: No he dicho que no se aprecien nunca, sólo le estaba explicando por qué en la mayor parte de las situaciones no se ven. Pero a veces sí se notan sus efectos. Por ejemplo, los colores del arcoíris que se ven en un CD son un efecto de interferencia. Y luego hay fuentes de luz especiales, los láseres, que emiten luz monocromática (de un solo color) y con ondas de larga duración (o sea, luz coherente). Con los láseres es mucho más fácil ver interferencias…

L.: Pero sigo sin ver la relación con lo de las estrellas…

A.: En seguida llegamos. Hay toda una serie de efectos debidos a las interferencias que aparecen cuando la luz se encuentra con un obstáculo o pasa por una apertura, como una rendija en una ventana, o el agujerito de entrada a una cámara… o a un telescopio. Se llaman difracción, pero lo de menos es el nombre. Lo que importa es que por culpa de estos efectos de interferencia, cuando enfocamos con un telescopio una fuente puntual, como una estrella, la imagen que conseguimos no es un punto, sino que tiene un cierto tamaño.

L.: ¿O sea, que no es posible enfocarla perfectamente, siempre se ve algo borrosa?

A.: Bueno, no es eso exactamente. Lo que significa es que incluso con unas lentes perfectas y enfocando perfectamente, lo mejor que obtenemos es una mancha. Esto es por culpa del efecto de las interferencias en la apertura de entrada al telescopio. Por eso, cuanto más grande sea la apertura por la que entra la luz, menor es el efecto de la difracción: grosso modo, el diámetro de la mancha es inversamente proporcional al diámetro de la apertura. Si miramos la estrella a ojo desnudo, la apertura es nuestra pupila; si lo hacemos con un telescopio, la apertura es el objetivo: será mayor y veremos una mancha más pequeña, pero todavía una mancha. Nunca vemos un punto.

L.: ¿Entonces, cuando miramos una estrella a ojo desnudo, lo que vemos es un pequeño disco, en lugar de un punto? No lo tengo yo tan claro… siempre se pintan las estrellas como puntos con rayos, y si pienso en lo que veo cuando lo miro por la noche al cielo, diría que es un punto que se mueve un poco, que titila…

A.: Lo que pasa es que la luz de la estrella nos llega a través de la atmósfera, y según lo calmada o turbulenta que esté, sus rayos se desvían y dan lugar a ese efecto de titilación:

pickering1

(es una simulación informática, no es una imagen real, lo he sacado de esta página). Pero en una atmósfera perfectamente en calma, las estrellas parecen “puntos gordos”:

pickering10

Curiosamente, en condiciones ideales, se ve incluso un anillo o hasta varios… algo muy típico de las interferencias, por cierto. Aquí tiene una imagen de un caso ideal:

airy_disc(sacado de aquí)

Aunque sin telescopio nunca se ven esos detalles de anillos y demás, los astrónomos antiguos tenían claro que las estrellas no eran puntos, y las atribuían un tamaño angular entre 0,25 y 2 minutos de arco. Muy pequeño, pero no cero.

L.: ¿Y con el telescopio, que tamaño medían?

A.: Como era de esperar, mucho más pequeño, porque las aperturas son mayores. Venían a tener diámetros cinco o diez veces más pequeños, dependiendo del brillo… pero como el telescopio permitía medir ángulos mucho menores, el tamaño se apreciaba perfectamente.

L.: No me había dicho que el tamaño dependiera del brillo. ¿Es que esa difracción de la que me hablaba depende de la intensidad de la luz?

A.: No, pero pasa una cosa muy curiosa. Ya ha visto el aspecto que tiene la mancha, pero se aprecia mucho mejor en una gráfica de la intensidad a lo largo del diámetro. En esta figura se ve para dos estrellas, una más intensa y otra menos:Airy_function_recortada

El ojo tiene un cierto umbral de sensibilidad, lo que significa que por debajo de cierta intensidad de luz ya no ve nada. En la gráfica se ve que la existencia de ese umbral hace que parezcan más grandes las estrellas más luminosas… cosa que parece muy natural ¡pero es un artefacto del instrumento y de la sensibilidad del ojo!

L.: ¿Cómo que un “artefacto”?

A.: Quiero decir, un efecto del instrumento, que no corresponde a algo real. Es curioso que cuando Galileo empezó a usar el telescopio, una de las pegas que le ponían sus archienemigos aristotélicos era que lo que se viera por ese tubo no tenía por qué ser real, sino que a lo mejor era el propio tubo el que lo producía. O sea, sospechaban que podía producir artefactos. Cuando leemos hoy en día eso, nos parecen unos escrúpulos ridículos porque estamos acostumbrados a usar aparatos ópticos como las cámaras o los prismáticos, y pensamos que no afectan nada a la imagen… pero aquí tenemos un ejemplo de que sí la afectan, y de una manera que puede tener importantes consecuencias teóricas.

L.: Bueno, parece que por fin llegamos a las consecuencias de todo esto sobre la distancia de las estrellas… Ya era hora, pero si no le importa, mejor lo dejamos para otro rato, que tanto artefacto me ha dejado la cabeza borrosa.

A.: Claro… el próximo post acabamos.