Etiquetado: exámenes

¡Mas problemas difíciles!

La historia se repite, y en estos tiempos acelerados de internet se repite con tanta rapidez que se convierte en un presente continuo. Si hace unos días hablábamos del dificilísimo problema del cocodrilo que cayó en la “selectividad” escocesa, ahora tenemos a la prensa informando sobre otro caso análogo, pero en Australia (ver por ejemplo The Independent y The Telegraph).

De nuevo están los estudiantes clamando en twitter contra un problema dificilísimo: el de la moneda de 50 centavos. Aquí está el enunciado:

VCEMaths

¿Cuál es el ángulo \chi cuando las dos monedas están colocadas así?

La cosa tiene su gracia porque, como ven, es una pregunta tipo test, con un dibujo hecho a escala… y a ojo debería verse que el ángulo es más de 45º, mientras que 72º seguramente parece mucho. En fin, que sólo sabiendo qué pinta tienen los ángulos ya se podría responder bien.

Pero naturalmente puede demostrarse. Aquí dan esta explicación:

En una moneda de 50 céntimos hay 12 lados, así que cada ángulo exterior es 360/12 = 30 grados. El ángulo en cuestión es la suma de dos ángulos exteriores (uno por cada moneda) así que es 2 x 30 = 60 grados.

Correcto, pero no me gusta porque usa el concepto de “ángulo exterior” y ¿quién recuerda eso del colegio? En realidad basta con cosas más sencillas:

50cents1

  • El polígono regular de 12 lados está formado por 12 triángulo unidos por el vértice, como el del la figura, así que el ángulo de ese vértice es \alpha=360/12=30^{\circ}
  • Como los ángulos de un triángulo suman 180º, el otro ángulo es \beta=(180-30)/2=75^{\circ}
  • Y ahora no hay más que mirar al dibujo para ver que dos \beta de una moneda más otros dos \beta de la otra moneda, más nuestro ángulo incógnita \chi suman 360º. Y si 4\beta+\chi=360^{\circ}, tiene que ser \chi=60^{\circ}

50cents2

La verdad es que protestar por este problema tiene menos excusa (aún) que protestar por el del cocodrilo. Pero toda esta plaga de indignación estudiantil, y el eco que se hacen los periódicos de ella, nos dice muchas cosas interesantes sobre cómo se enseñan las ciencias en el colegio. Por si alguien todavía creía que se enseña a los alumnos a pensar

(Gracias a Celeste, que me pasó la noticia)

Anuncios

El cocodrilo reconsiderado

Terminamos el post anterior diciendo que el problema del cocodrilo, bien entendido, tiene también su interés desde el punto de vista físico. Vamos a ello.

Como vimos, en el enunciado nos dicen que el tiempo para ir de C (cocodrilo) a Z (cebra) por el camino marcado es:

t(x) = 5 \sqrt{36 + x^2} + 4(20-x)

Cocodrilo_1

¿De dónde sale esta fórmula? Nos la dan gentilmente, así que para resolver el problema no hace falta preguntárselo: la aceptamos y punto. Pero la actitud científica consiste precisamente en no limitarse a aceptar las cosas y punto. Así que, ¿de dónde sale la fórmula?

Si el cocodrilo va a velocidad constante v_A por el agua y v_T por tierra, y las distancias respectivas que recorre son d_A y  d_T, el tiempo que tardará será:

t=\frac{d_A}{v_A} + \frac{d_T}{v_T}

Pero a la vista del dibujo, y usando el teorema de Pitágoras para calcular d_A, tenemos que el tiempo, en función de la distancia x, es:

t(x)=\frac{\sqrt{x^2 + y^2}}{v_A} + \frac{20-x}{v_T}

Y basta con comparar con la ecuación del enunciado para ver que y=6, v_A=1/5, v_T=1/4. Las unidades de la distancia son metros y las de las velocidades, metros por décima de segundo, así que tenemos que v_A= 2 m/s y v_T = 2,5 m/s.

Ahora empezamos a entender dónde está la gracia del problema. Si el cocodrilo fuera más rápido por agua que por tierra, estaría muy claro lo que tiene que hacer: ir en línea recta. Pero como va más rápido por tierra, puede interesarle dar un pequeño rodeo, recorriendo parte del trayecto por la orilla opuesta: la longitud total recorrida será mayor, pero  puede que el tiempo sea menor. Y ahora no es nada evidente cómo tiene que dar el rodeo: tenemos un problema de optimización.

Lo mismo ocurriría en el caso más general de que la cebra no estuviera a la orilla sino más hacia el interior. Este caso es completamente análogo al del clásico problema del socorrista que ve desde la playa que un bañista se está ahogando.

El socorrista (S) quiere alcanzar al bañista que se ahoga (B) en el menor tiempo posible.

El socorrista (S) quiere alcanzar al bañista que se ahoga (B) en el menor tiempo posible. Los ángulos los necesitaremos luego. De momento, llamamos con el subíndice 1 a todo lo que está a la derecha y con 2 a todo lo que está a la izquierda.

¿Qué tiene que hacer para llegar lo antes posible? Teniendo en cuenta que el socorrista, como el cocodrilo, corre más deprisa que nada, la mejor estrategia no será ir en línea recta. Conviene correr por tierra el todo lo posible… o quizá no: si corremos hasta p’, enfrente del bañista, probablemente estemos alargando demasiado nuestro recorrido, alejándonos demasiado de la recta. Seguramente lo mejor será un compromiso entre velocidad rápida y recorrido corto, un punto como p, que dependerá de la proporción entre las velocidades del socorrista cuando corre y cuando nada.

Cuál es ese compromiso no es nada evidente, pero aquí entra en juego la magia del cálculo diferencial, que nos dice que el tiempo mínimo se consigue cuando la derivada de ese tiempo es cero. Con más precisión: tenemos que escribir una fórmula que nos de t en función de la posición de p (es decir, en función de x1), y el valor de  x1 que haga que la derivada sea cero será el valor para el que t es mínimo.

¡Manos a la obra! A la vista del esquema está claro que:

t=\frac{\sqrt{x_1^2 + y_1^2}}{v_1} + \frac{\sqrt{x_2^2 + y_2^2}}{v_2}=\frac{\sqrt{x_1^2 + y_1^2}}{v_1} + \frac{\sqrt{(h-x_1)^2 + y_2^2}}{v_2}

ya que x_2 = h-x_1. Derivando e igualando a cero:

\frac{d t}{d x_1} = \frac{x_1}{v_1 \sqrt{x_1^2 +y_1^2}} - \frac{h- x_1}{v_2 \sqrt{(h-x_1)^2 +y_2^2}} =0

y sustituyendo ahora h-x_1=x_2,

\frac{x_1}{v_1 \sqrt{x_1^2 +y_1^2}} = \frac{x_2}{v_2 \sqrt{x_2^2 +y_2^2}}

Pero
\frac{x_1}{\sqrt{x_1^2 +y_1^2}}= sen \theta_1 y \frac{x_2}{\sqrt{x_2^2 +y_2^2}}= sen \theta_2

así que la condición que cumple el punto p podemos ponerla de esta manera:

\frac{sen \theta_1}{v_1} = \frac{sen \theta_2}{v_2}

¡Un resultado realmente sencillo! Pero lo mejor de todo es que es un resultado muy conocido: ¡es justamente la ley de Snell de la refracción de la luz! El camino que debería recorrer el socorrista es el camino que recorre la luz cuando atraviesa la intercara entre dos medios en los que se propaga a diferente velocidad.

Fue el genial Pierre de Fermat (el del último teorema) quien estableció que…”El trayecto seguido por la luz al propagarse de un punto a otro es tal que el tiempo empleado en recorrerlo es un mínimo“. Una idea de una suprema elegancia, de la que habría mucho que hablar… pero ya basta por hoy: no dirán que no nos ha llevado lejos el cocodrilo, ¿no?

*

Propina: El lector que no se haya aburrido todavía puede comprobar por sí mismo que el caso del cocodrilo (que está situado justo en la orilla, es decir, en la intercara entre los dos medios) se corresponde justamente con lo que en óptica se llama reflexión total, en concreto al caso de ángulo crítico. Curioso que la caza de cebras, o el rescate de bañistas, resulten ser análogos a la óptica de los prismas, ¿verdad?

¿De verdad es trivial el problema del cocodrilo?

En el post anterior despaché el problema del cocodrilo diciendo que era “una trivialidad” y eso no es del todo justo, por dos razones bien diferentes.

Cocodrilo_enunciado1

La primera es que hay dos cosas en el enunciado que pueden dar lugar a confusión. Una, que el dibujo no está del todo claro: puede entenderse que las distancias se miden desde el cocodrilo, en vez de desde el punto que está enfrente, en la orilla opuesta. Habría sido mejor un esquema más simplificado, como éste:

Cocodrilo_1

Esquema simplificado para el problema del cocodrilo (C) y la cebra (Z). Hemos llamado “y” a la anchura del río.

Otra pega del enunciado es que empieza llamando x a la distancia para la que se minimiza el tiempo…

Cocodrilo_enunciado2

…y a continuación se da una fórmula para el tiempo en la que x es un punto genérico:Cocodrilo_enunciado3

Esto puede inducir a confusión, pero ¿es suficiente para disculpar a los alumnos que encontraron el problema “devastador”? Sólo en parte, porque cualquiera que esté acostumbrado a hacer problemas interpretará estos puntos dudosos de la manera correcta sin dudarlo.

Llegamos aquí a una cuestión importante que suele ignorarse: entender un enunciado no es tan simple como pudiera parecer. Siempre hay muchos convenios implícitos que son obvios para el experto pero no para el novicio. El recién llegado a la física es como Paco Martínez Soria cuando llega a Madrid en “La ciudad no es para mí”. Viene de una cultura diferente y tiene que aprender un montón de cosas que son transparentes para los lugareños, hasta el punto de que éstos no se dan cuenta de que haya nada que aprender y es fácil que lo tomen por tonto.

A la hora de poner un problema, el profesor que sea consciente de esta dificultad “cultural” puede querer explicitar todo al máximo para que no haya malentendidos. Pero entonces el enunciado será demasiado farragoso y algunos no lo entenderán precisamente por eso. El dilema no se puede resolver, pero se debería disolver con el tiempo, según el alumno vaya haciendo suyos los usos y costumbres de la física. Mientras, todo lo que cabe hacer es estar alerta y cuidar al máximo la claridad, pensando y repasando una y otra vez los enunciados, puliéndolos como el poeta pule sus versos.

Siendo como soy consciente de lo difícil que es escribir un buen enunciado, puedo disculpar a los redactores del problema del cocodrilo… pero tengo que reconocer que pudieron hacerlo mejor.

Hay otro sentido en el que el problema del cocodrilo no es trivial, un sentido que tiene más interés desde el punto de vista puramente físico. Pero lo vamos a dejar para el siguiente post.

El dificilísimo problema del cocodrilo

Me acabo de enterar por el ABC del “Complicado problema matemático que hizo llorar a los alumnos escoceses”. Resulta que “un problema matemático dirigido a estudiantes de Escocia que se presentaban a la Scottish Qualifications Authority (SQA), un equivalente a selectividad en España, terminó causando lágrimas de rabia (…) Según informa la BBC, la complejidad de este problema matemático provocó que la nota mínima se tuviera que reducir hasta un 34% en la prueba de mayo, en comparación con el 45% del año anterior. Así, los estudiantes de 16 y 18 años lanzaron sus quejas en redes sociales y se unieron para firmar dos peticiones como protesta contra la excesiva dificultad del problema”.

¿Cuál era el dificilísimo problema? Aquí está:

_85974457_croc

En resumen: como el cocodrilo no va igual de rápido por agua que por tierra, el tiempo que tarda en alcanzar a la cebra depende del punto x en el que sale del río (el dibujo muestra que va en línea recta en cada tramo), y nos dan la ecuación que proporciona el tiempo en función de x.
Pregunta (a): ¿Cuánto tarda el cocodrilo si va sólo por agua?¿Y si nada lo menos posible?
Pregunta (b): ¿Para qué valor de x es el tiempo mínimo?

Estoy seguro de que el lector resolverá el apartado (a) en cosa de un minuto. Y el apartado (b) le llevará, si sabe derivar, cinco como mucho.

¿Cómo es posible entonces que esta trivialidad causara “shock y devastación” en palabras de Logan Fraser, un profesor de academia entrevistado por la BBC? Para ser justos, parece que las quejas se referían a la dificultad global del examen, pero lo cierto es que este problema concreto es que se ha convertido en “viral”, como se dice ahora.

Toda la vida los malos estudiantes se han quejado de que los exámenes son difíciles, y han buscado el apoyo del grupo (mucho más reconfortante y barato que reconocer que uno no sabe)…pero ahora tienen twitter, firman peticiones online, y su caso llega a la BBC.

No pasa nada mientras no les empecemos a hacer caso. Pero, ya que estas tormentas de ignorancia desbordan ahora el vaso de agua, y se desparraman por los medios, ¿podemos aprender algo de ellas?

Que este problema resulte difícil es revelador de muchas cosas. Por un lado, del déficit de comprensión oral. Nuestro Mr Fraser se quejaba de que: “las preguntas fueran tan prolijas, que hubiera que leerlas varias veces para entender exactamente lo que quería decir, sin importar qué fórmula hubiera que utilizar o cómo solucionarlo”. Mi experiencia es que los alumnos españoles llegan a primero de carrera con graves dificultades para entender un texto que sea mínimamente complicado, como el del enunciado del problema (no digamos si el texto va más allá de la mera función enunciativa y tiene matices poéticos o irónicos…, pero vamos a quedarnos en las matemáticas)

Nuestra enseñanza de las ciencias no hace nada por mejorar esta comprensión: al contrario, agrava el problema. Año tras año, los alumnos se entrenan en resolver “problemas tipo” que no exigen pensar. Los enunciados son previsibles, variaciones sobre un mismo tema que siempre apuntan a una fórmula del libro, que lo resuelve todo. El problema de este enunciado es que no es estándar, no es lo que los alumnos esperaban. Y por eso están indignados: llevan años jugando al mismo juego y cuando les examinan ¡les preguntan por un cocodrilo y sale una fórmula rara que no viene en ningún libro!

Por mi parte, el problema me parece muy bien. Y yo le añadiría dos preguntas más:

  • ¿Qué velocidad tiene el cocodrilo cuando va por el agua?¿Y cuando va por tierra?
  • ¿Qué anchura tiene el río?

¿Se animan a responderlas?

Con esto habría quedado un problema más redondo… pero las quejas a lo mejor llegaban ya no sólo hasta la BBC y el ABC, sino hasta la CBS y la NBC…