Etiquetado: Selectividad

La EvAU, la nota de corte y los mundos posibles

Estos días, miles de alumnos que hace poco conocieron la nota de la EvAU (antes llamada Selectividad) se enfrentan a una decisión que va a marcar su futuro: elegir carrera.

La cuestión no es aprobar (lo consiguen más del 90% de los presentados) sino sacar una nota suficientemente alta para ser admitido, algo que sólo resulta difícil en unas cuantas titulaciones, las más demandadas.

Así que si un estudiante madrileño (llamémosle Diego) quiere ser ingeniero de caminos, puede respirar tranquilo porque la nota de corte en la Politécnica de Madrid es un 5. Sin embargo, si su sueño es ser médico, el panorama es muy distinto: en la Autónoma necesitará un astronómico 13,11 (recordemos que la máxima nota posible es un 14) y en la Universidad de Alcalá, la que tiene nota de corte más baja en la Comunidad de Madrid, un 12,747, que no es precisamente fácil de alcanzar. Pero nuestro Diego es un excelente estudiante y ha sacado un 12,854. ¿Puede respirar tranquilo entonces?

No está tan claro. La nota de corte que ha encontrado en la web es la del último alumno que se matriculó el año pasado, en 2017, y lo que importa es la nota del 2018. No la puede saber, claro, pero puede preverla basándose en la evolución de los últimos años. Con un rato de googleo encuentra estos datos:

2012: 12,229       2013: 12,396       2014: 12,422       2015: 12,543       2016: 12,575       2017: 12,747

Malas noticias: la nota del corte está subiendo como la espuma; en cinco años, un poco más de 5 décimas. Si sube a una décima por año, se pondría en 12,877 en el 2018 y ¡se quedaría sin entrar!

Pero no hay que alarmarse todavía. Podemos hacer una predicción mejor, si sabemos cómo procesar mejor estos datos… como lo haría por ejemplo un físico. A Diego no se lo han enseñado en el bachillerato, así que vamos a hacer el trabajo por él.

Lo primero es recabar más datos. No cuesta mucho tener los de todas las universidades madrileñas, y lo mejor es ponerlos en un gráfico:

EvolucionNotasCorte

Se confirma que la tendencia ascendente es universal, y muy acentuada: hace sólo 2 años, en 2016, Diego habría entrado en cualquier universidad de Madrid; en 2017, sólo en la Rey Juan Carlos y la de Alcalá. En 2018… es lo que hay que ver.

En lugar de mirar al pasado, tenemos que mirar al futuro y extrapolar. Centrémonos en el caso más favorable, el de Alcalá. En lugar de unir los puntos como antes, vamos a dibujar una línea de tendencia (hay una manera matemáticamente rigurosa de hacerlo, que se llama regresión lineal, pero sale casi igual de bien a ojo, con una regla). Voilá:

AjusteNotasCorte

Esta es una gráfica más profesional… y más tranquilizadora: vemos que la extrapolación de la nota de corte en medicina en la universidad de Alcalá para el 2018 queda por debajo de la nota de Diego. Es fácil ver por qué antes teníamos una predicción distinta: fijarnos en el incremento total de la nota de corte en estos años es cómo trazar una línea sólo con los puntos primero y último, que tiene más pendiente que la recta de ajuste correcta.

Ahora bien, ¿cómo de tranquilos podemos estar? Sería arriesgado decir con estos datos que Diego va a entrar: en realidad, lo que nos dice nuestra gráfica es que es lo más probable es que entre. ¿Podríamos cuantificar esta probabilidad?

Pues sí: pensando en la tranquilidad de Diego (y de sus padres), hace tiempo que los matemáticos dieron con una forma de hacerlo… que además se basa en algo que Diego sí ha estudiado: la distribución normal de probabilidad, la famosa campana de Gauss, esa de la que le han dado una tabla en el examen de la EvAU…

Pero ¿cómo es que podemos hablar de probabilidades? Cada año, la nota de corte es la que es ¡no hay ninguna “distribución de probabilidades”! Es cierto, pero no subestimemos el ingenio de los matemáticos. Podemos dar un giro a nuestra manera de ver el asunto.

Supongamos que nuestro mundo es sólo uno de los muchos mundos posibles. Supongamos que en cada mundo hay una nota de corte, que están distribuidas según una distribución normal (porque ¿de qué otra manera iban a estarlo?), y que la bonita variación lineal que hemos llamado “ajuste” es el promedio de las notas de corte en todos los mundos posibles. Entonces, las notas de corte que hemos observado de hecho en nuestro mundo (los puntos de la gráfica) se desviarán de esa recta como cabe esperar que se desvíen de la media las muestras extraídas de una distribución normal.

Lo interesante es que esta idea nos permite averiguar cómo es esa distribución: como le han explicado a Diego en el bachillerato, una distribución normal  tiene una anchura dada por el parámetro σ (sigma: la desviación típica), de modo que el 68% de los valores está comprendido en un intervalo de ± σ en torno a la media. Así que podemos saber la σ de la distribución de notas (en todos los mundos posibles) trazando el intervalo en torno a la línea de medias (la recta de ajuste) que contiene el 68% de las observaciones, es decir, 4 de 6. Aquí está:

AjusteConIntervalo

En la banda definida por las dos líneas grises hay cuatro datos: el 68% de los 6 que tenemos. La anchura de esa banda es pues  σ, y sólo tenemos que ver a cuánta distancia está Diego de la línea de ajuste, medida en unidades de σ. Se ve en la gráfica que está a un poco más de una sigma; si lo medimos bien, resulta ser 1,37 sigmas. Y ahora, con una tabla como la del examen de la EvAU, podemos ver que la probabilidad de que un valor esté a una distancia de la media menor o igual que 1,37·σ es del 91%.  Eso significa que en el 91% de los universos posibles, el valor de la nota de corte en 2018 está por debajo de la de Diego: puede respirar tranquilo.

O para ser precisos, un 91% tranquilo…

*

Nota: Los lectores con buena vista habrán observado que las dos líneas grises no son exactamente paralelas, sino que se abren al alejarnos del centro de la gráfica. Y los lectores expertos en estadística sabrán por qué. Pero el post es demasiado largo ya para explicarlo, y lo mejor del asunto es que ese tecnicismo no tiene mucha importancia en realidad…

Anuncios

¡Mas problemas difíciles!

La historia se repite, y en estos tiempos acelerados de internet se repite con tanta rapidez que se convierte en un presente continuo. Si hace unos días hablábamos del dificilísimo problema del cocodrilo que cayó en la “selectividad” escocesa, ahora tenemos a la prensa informando sobre otro caso análogo, pero en Australia (ver por ejemplo The Independent y The Telegraph).

De nuevo están los estudiantes clamando en twitter contra un problema dificilísimo: el de la moneda de 50 centavos. Aquí está el enunciado:

VCEMaths

¿Cuál es el ángulo \chi cuando las dos monedas están colocadas así?

La cosa tiene su gracia porque, como ven, es una pregunta tipo test, con un dibujo hecho a escala… y a ojo debería verse que el ángulo es más de 45º, mientras que 72º seguramente parece mucho. En fin, que sólo sabiendo qué pinta tienen los ángulos ya se podría responder bien.

Pero naturalmente puede demostrarse. Aquí dan esta explicación:

En una moneda de 50 céntimos hay 12 lados, así que cada ángulo exterior es 360/12 = 30 grados. El ángulo en cuestión es la suma de dos ángulos exteriores (uno por cada moneda) así que es 2 x 30 = 60 grados.

Correcto, pero no me gusta porque usa el concepto de “ángulo exterior” y ¿quién recuerda eso del colegio? En realidad basta con cosas más sencillas:

50cents1

  • El polígono regular de 12 lados está formado por 12 triángulo unidos por el vértice, como el del la figura, así que el ángulo de ese vértice es \alpha=360/12=30^{\circ}
  • Como los ángulos de un triángulo suman 180º, el otro ángulo es \beta=(180-30)/2=75^{\circ}
  • Y ahora no hay más que mirar al dibujo para ver que dos \beta de una moneda más otros dos \beta de la otra moneda, más nuestro ángulo incógnita \chi suman 360º. Y si 4\beta+\chi=360^{\circ}, tiene que ser \chi=60^{\circ}

50cents2

La verdad es que protestar por este problema tiene menos excusa (aún) que protestar por el del cocodrilo. Pero toda esta plaga de indignación estudiantil, y el eco que se hacen los periódicos de ella, nos dice muchas cosas interesantes sobre cómo se enseñan las ciencias en el colegio. Por si alguien todavía creía que se enseña a los alumnos a pensar

(Gracias a Celeste, que me pasó la noticia)

El dificilísimo problema del cocodrilo

Me acabo de enterar por el ABC del “Complicado problema matemático que hizo llorar a los alumnos escoceses”. Resulta que “un problema matemático dirigido a estudiantes de Escocia que se presentaban a la Scottish Qualifications Authority (SQA), un equivalente a selectividad en España, terminó causando lágrimas de rabia (…) Según informa la BBC, la complejidad de este problema matemático provocó que la nota mínima se tuviera que reducir hasta un 34% en la prueba de mayo, en comparación con el 45% del año anterior. Así, los estudiantes de 16 y 18 años lanzaron sus quejas en redes sociales y se unieron para firmar dos peticiones como protesta contra la excesiva dificultad del problema”.

¿Cuál era el dificilísimo problema? Aquí está:

_85974457_croc

En resumen: como el cocodrilo no va igual de rápido por agua que por tierra, el tiempo que tarda en alcanzar a la cebra depende del punto x en el que sale del río (el dibujo muestra que va en línea recta en cada tramo), y nos dan la ecuación que proporciona el tiempo en función de x.
Pregunta (a): ¿Cuánto tarda el cocodrilo si va sólo por agua?¿Y si nada lo menos posible?
Pregunta (b): ¿Para qué valor de x es el tiempo mínimo?

Estoy seguro de que el lector resolverá el apartado (a) en cosa de un minuto. Y el apartado (b) le llevará, si sabe derivar, cinco como mucho.

¿Cómo es posible entonces que esta trivialidad causara “shock y devastación” en palabras de Logan Fraser, un profesor de academia entrevistado por la BBC? Para ser justos, parece que las quejas se referían a la dificultad global del examen, pero lo cierto es que este problema concreto es que se ha convertido en “viral”, como se dice ahora.

Toda la vida los malos estudiantes se han quejado de que los exámenes son difíciles, y han buscado el apoyo del grupo (mucho más reconfortante y barato que reconocer que uno no sabe)…pero ahora tienen twitter, firman peticiones online, y su caso llega a la BBC.

No pasa nada mientras no les empecemos a hacer caso. Pero, ya que estas tormentas de ignorancia desbordan ahora el vaso de agua, y se desparraman por los medios, ¿podemos aprender algo de ellas?

Que este problema resulte difícil es revelador de muchas cosas. Por un lado, del déficit de comprensión oral. Nuestro Mr Fraser se quejaba de que: “las preguntas fueran tan prolijas, que hubiera que leerlas varias veces para entender exactamente lo que quería decir, sin importar qué fórmula hubiera que utilizar o cómo solucionarlo”. Mi experiencia es que los alumnos españoles llegan a primero de carrera con graves dificultades para entender un texto que sea mínimamente complicado, como el del enunciado del problema (no digamos si el texto va más allá de la mera función enunciativa y tiene matices poéticos o irónicos…, pero vamos a quedarnos en las matemáticas)

Nuestra enseñanza de las ciencias no hace nada por mejorar esta comprensión: al contrario, agrava el problema. Año tras año, los alumnos se entrenan en resolver “problemas tipo” que no exigen pensar. Los enunciados son previsibles, variaciones sobre un mismo tema que siempre apuntan a una fórmula del libro, que lo resuelve todo. El problema de este enunciado es que no es estándar, no es lo que los alumnos esperaban. Y por eso están indignados: llevan años jugando al mismo juego y cuando les examinan ¡les preguntan por un cocodrilo y sale una fórmula rara que no viene en ningún libro!

Por mi parte, el problema me parece muy bien. Y yo le añadiría dos preguntas más:

  • ¿Qué velocidad tiene el cocodrilo cuando va por el agua?¿Y cuando va por tierra?
  • ¿Qué anchura tiene el río?

¿Se animan a responderlas?

Con esto habría quedado un problema más redondo… pero las quejas a lo mejor llegaban ya no sólo hasta la BBC y el ABC, sino hasta la CBS y la NBC…