Categoría: Historia

Retrogradando

Decía en el post anterior que me encontré por casualidad con la superstición del Mercurio Retrógrado buscando figuras o vídeos para explicar la retrogradación de los planetas. En realidad, ha habido tres tipos de explicaciones, y cada una marcó una época en la astronomía.

La primera fue la de Eudoxo de Cnido, un brillante matemático discípulo de Platón. Desde hacía tiempo los astrónomos griegos coincidían en que las estrellas estaban fijas a una gigantesca esfera celeste, concéntrica con la esfera terrestre y que giraba a su alrededor. Eudoxo imaginó al Sol fijo sobre una tercera esfera, cuyo eje estaba pinchado en la esfera celeste y que por tanto era arrastrada con ella, pero que tenía un lento movimiento propio en sentido contrario (una vuelta cada 365 días) que explicaba su retraso respecto de las estrellas. El eje de la esfera del Sol no coincidía con el de la esfera celeste, y esta inclinación explicaba que el Sol unas veces estuviera más lejos de la estrella Polar (en invierno) y otras más cerca (en verano, como en la figura siguiente).

EsferaCelesteYEsferaDelSol

El modelo de las dos esferas (celeste y terrestre) al que se ha añadido la esfera del Sol, como propuso Eudoxo. Como ésta gira en sentido contrario lentamente, el Sol tarda un poco más en dar una vuelta completa que las estrellas. Cada vuelta de estas, el retraso es de 1/365 de un día = 4 minutos. Por eso el el Sol tarda 24 horas en completar su vuelta en vez de 23 horas y 56 minutos, como las estrellas.

El movimiento de la Luna se explicaba de manera totalmente análoga, pero ¿qué hacer con los planetas? Ante todo, su movimiento promedio respecto a las estrellas se explicaba igual que el del Sol o la Luna: añadiendo una esfera con un movimiento propio, pinchada en la esfera celeste y arrastrada por ésta. Pero ¿cómo conseguir que “vagabundearan”, unas veces acelerándose y otras frenándose?

Aquí Eudoxo demostró su genialidad: ideó un mecanismo de dos esferas, girando una en sentido contrario de la otra, que producían una trayectoria en forma de ocho (técnicamente llamada hipópeda). Copio la explicación sacada de De Tales a Newton (el libro):

En la siguiente figura vemos une esquema con las dos esferas y el punto X, que representa un planeta, sobre el ecuador de la esfera interior. En (a) vemos los respectivos ejes EF y GH. Si los dos ejes coincidieran, como giran en sentidos contrarios, el movimiento de una esfera contrarrestaría al de la otra y X no se movería. Pero como los ejes forman un cierto ángulo, el punto X traza la figura en forma de 8 dibujada en (b) (donde ahora se ha cambiado el punto de visión de modo que el plano de los ejes es perpendicular al del papel). Al superponerse el movimiento de las esferas exteriores, el bucle proporciona las retrogradaciones.

HipopedaDeTalesANewton

(a) Las dos esferas de Eudoxo para conseguir una retrogradación. Ambas giran en sentidos contrarios con el mismo periodo. El punto X representa un planeta. (b) La misma construcción en la que el punto de vista ha girado 90º. Se ha dibujado la figura descrita por el planeta desde este punto de vista. La escala es la misma en ambos dibujos, pero la amplitud vertical del bucle se ha exagerado mucho.

Podemos ver esta construcción en movimiento aquí (no apto para propensos al mareo):

animated_hippopede_of_eudoxus

Las dos esferas de Eudoxo, que dibujan la hipópeda, en movimiento (para mejor visibilidad, sólo se ha dibujado un meridiano de cada una). El punto que representa al planeta está fijo en el meridiano rojo. Fuente: https://en.wikipedia.org/wiki/Eudoxus_of_Cnidus

Ahora, como hemos dicho, si estas dos esferas se montaban sobre las dos anteriores, el “ocho” se superponía al movimiento promedio, y en el tramo que era recorrido hacia atrás daba lugar a la retrogradación. Eudoxo conseguía algo notablemente difícil, aunque al precio de usar cuatro esferas para cada planeta: explicar su movimiento irregular mediante la superposición de giros uniformes de esferas.

1280px-eudoxus27_homocentric_spheres

Las cuatro esferas que Eudoxo necesitaba para explicar el movimiento de un planeta. La más externa es la esfera celeste, la siguiente, la que da cuenta del movimiento promedio del planeta, y las dos interiores, las que dan lugar a la hipópeda. Fuente: https://en.wikipedia.org/wiki/Eudoxus_of_Cnidus

Podemos ver todo el sistema en acción en este vídeo (pero ¡sólo hasta el minuto 1:30!)

Seguramente Platón, que por motivos filosóficos defendía que todos los movimientos astronómicos debían ser circulares y uniformes, estaría orgulloso del logro de su discípulo. Pero los astrónomos, apegados a las observaciones, pronto encontraron problemas en el modelo de Eudoxo. Aunque explicaba cualitativamente el vagabundeo de los planetas, no lo hacía cuantitativamente: no permitía hacer predicciones.

Los astrónomos no podían permitirse esas inexactitudes, y tuvieron que afrontar otra vez el rompecabezas. Un par de siglos después tenían una nueva solución: el modelo de epiciclos. Y, remarcablemente, seguía utilizando movimientos circulares y uniformes… ¡y era más sencillo!

Lo vemos en el mismo vídeo de antes, si lo abrimos a partir  del minuto 1:30: nos olvidamos de las esferas y el planeta gira en un círculo (epiciclo) cuyo centro gira a su vez en torno a la Tierra (en otro círculo, llamado deferente). Periódicamente, las velocidades sobre epiciclo y deferente van en sentido contrario, se restan, y se produce la retrogradación.

Esta explicación de las retrogradaciones duró más de 1700 años, pero se acabó abandonando cuando por la explicación actual Copérnico, Kepler y Galileo abrieron una nueva época en la astronomía. ¿Cuál es esa explicación? Como el post ya es bastante largo, no voy a entretenerme: miren el vídeo a partir del minuto 2:19 y  lo verán.

Las ideas de la ciencia, de Tales a Newton: Una antología de posts

Ahora que en el mundo real (Universidad Carlos III) estamos inmersos en el curso de humanidades “Las ideas de la ciencia”, he pensado que puede ser un buen momento para recopilar unos cuantos posts que he ido escribiendo estos años y que son una ampliación o un comentario del libro y del curso… a beneficio de los alumnos curiosos (o de los diletantes que se dejen caer por aquí). Los ordeno según los capítulos del libro.

En el principio fue la medida

El mirador y la forma de la Tierra

¿Realmente se ve Gibraltar desde el Pico Veleta?

Umberto Eco y la Tierra plana

Modelos del cielo

Mirando al cielo, en Youtube

Mirando al cielo desde Ávila (I): Estrellas y constelaciones

Mirando al cielo desde Ávila (II): La bóveda celeste

Mirando al cielo desde Ávila (III): El año, el mes y la semana

Mirando al cielo desde Ávila (IV): El Universo de las dos esferas

Mirando al cielo desde Ávila (V): Un salto al cosmos de Aristóteles

Mirando al cielo desde Ávila (y VI): Epílogo: La ambrosía de Ptolomeo

Mapas de la Tierra

Cartografía en la Biblioteca Nacional

Mapas en la Biblioteca Nacional

España en 1486, según la Geografía de Ptolomeo

Viaje a las antípodas

(Des)conocimiento del medio

Las antípodas y los antípodas

Diez razones por las que sabemos que la Tierra es redonda

La Tierra, esa bola de billar

El mundo según Aristóteles

La flecha de Aristóteles y el órgano sensorial de Dios

Los cuatro temperamentos… y las mujeres

¿No será usted aristotélico sin saberlo? (y II)

¿No será usted aristotélico sin saberlo? (I)

Aristóteles y el manga (etcétera)

El cielo, de Aristóteles a Copérnico

Galileo y las montañas de la Luna

La paradójica revolución de Copérnico

Copérnico y la campana de Huesca

Agudeza Visual

Galileo (I): El primer científico moderno

¿Eppur si muove?

La verdadera historia de Galileo y la Torre de Pisa (II)

La verdadera historia de Galileo y la Torre de Pisa (I)

La verdadera historia de Galileo y la Torre de Pisa (III)

Siete mitos sobre Galileo que casi todo el mundo cree

El experimento de Galileo, a lo grande

Galileo lo tuvo mucho más difícil

Emulando a Galileo… con el móvil.

Galileo (II): El telescopio y la inquisición

El telescopio contra Copérnico (I): Pulgas y paralajes

El telescopio contra Copérnico (II): Estrellas, telescopios y artefactos

El telescopio contra Copérnico (y III): Unas estrellas inconcebibles

y de propina… (fuera de catálogo):

Colón y la Tierra plana

El día, la noche y el mapa

Del mapa al calendario

Alta mar

La paradoja del cambio de fecha (I): La Tierra como reloj

La paradoja del cambio de fecha (II): ¿Qué día es en las islas Fiyi?

La paradoja del cambio de fecha (y III): Por fin entendemos qué le pasó a Phileas Fogg

 

De la elipse en el suelo a la elipse en el cielo

En el post anterior vimos que podíamos estimar el tamaño de la iglesia de San Petronio de dos maneras: a partir del eje menor (D) de la elipse luminosa que el pequeño orificio del techo proyecta sobre el suelo y también a partir de la velocidad con la que esa elipse se mueve (v). Pero necesitábamos dos datos adicionales: en el primer caso, el tamaño angular del Sol (\theta), y en el segundo, su velocidad angular (\omega); recordemos que si r es la distancia del orificio a la elipse, D=r \theta y v=r \omega.

Naturalmente Giovanni Domenico Cassini no se tomó la molestia de construir la meridiana para medir la altura del techo de la iglesia… que conocía perfectamente. Ni siquiera su objetivo principal era construir el reloj más preciso del mundo. Era una obra cara, y si la Iglesia estaba dispuesta a pagarla (sabemos que costó 2500 liras de la época, al cambio, entre 200.000 y 250.000 euros de hoy) era por una buena razón: el papa Gregorio XIII había decretado de la reforma del calendario hacía ya más de 70 años, en 1582, y era hora de verificar su corrección. Había que medir la duración del año con mucha precisión, y Cassini podía hacerlo mediante la determinación de dos equinoccios consecutivos, porque en el equinoccio la trayectoria de la mancha de luz es una recta, perpendicular a la meridiana (¡realmente es un instrumento muy completo!).

cassini

Giovanni Domenico Cassini (Génova, 1625 – París 1712)

Pero el auténtico propósito de Cassini era otro. Buscaba algo mucho más interesante científicamente: medir un parámetro que nosotros hemos dado por sabido, el tamaño angular del Sol. Precisamente por las enormes dimensiones de la meridiana, se podía medir con gran precisión, dando la vuelta a la fórmula que pusimos al principio: \theta =D/r. Y esta medida precisa prometía dar un dato decisivo para resolver la gran pregunta de la astronomía de la época: decidir entre “los dos máximos sistemas del mundo”, el Tolemaico y el Copernicano; en definitiva, entre el geocentrismo y el heliocentrismo. Era la cuestión que veinte años antes había llevado a Galileo a juicio, así que no es de extrañar que Cassini fuera reservado.

*

El Sol se mueve respecto de las estrellas, volviendo a la misma posición al cabo de un año. Pero desde la antigüedad se sabe que este movimiento aparente es un poco más rápido en invierno que en verano. En el siglo II a.d.C, Hiparco de Nicea lo explicó suponiendo que el Sol se mueve en realidad a velocidad constante en torno a la Tierra, pero su círculo está un poco descentrado, de modo que en invierno está más cerca y parece por eso moverse más deprisa.

Pero si el Sol estaba más cerca, también parecería más grande, así que la hipótesis de Hiparco podía verificarse midiendo el tamaño aparente del Sol. Desgraciadamente, se trata de una medida muy difícil de hacer con precisión. No podemos mirar al Sol directamente, y aunque desde muy antiguo se le ha observado proyectando su imagen en una cámara oscura (la mejor manera, por ejemplo, de mirarlo en un eclipse) el tamaño de la imagen es tan pequeño que no hay manera de apreciar una variación entre verano e invierno. Salvo, claro está, que la cámara oscura fuera gigantesca, tan grande como una catedral… ¡o como la iglesia de San Petronio!

Cassini, en efecto, podía poner a prueba la hipótesis de Hiparco. Pero lo que hacía realmente interesante la cuestión es que ahora había una hipótesis alternativa. En 1609 Kepler había publicado dos leyes sobre el movimiento de los planetas. La primera decía que las órbitas no eran circulares sino elípticas; la segunda afirmaba que el aumento de velocidad del Sol en invierno no era sólo un efecto de la mayor cercanía, sino que había una aceleración real. Eran dos ideas revolucionarias, que rompían con dos mil años de astronomía en los que siempre se había considerado que todos los movimientos celestes eran circulares y uniformes (o, al menos, combinación de movimientos circulares y uniformes).

Kepler esquema

En concreto, Kepler decía que si consideramos los tramos recorridos en dos periodos breves e iguales de tiempo, uno (L1) cuando la Tierra está a la distancia mínima al Sol (d1) y otro (L2) cuando está a la distancia máxima (d2), las áreas de los dos triángulos de la figura deben ser iguales: L_1 d_1/2=L_2 d_2/2, o lo que es equivalente, \frac{L_1}{L_2}=\frac{d_2}{d_1}.

Naturalmente, desde el punto de vista de la Tierra quien se movería sería el Sol. Su velocidad aparente (la llamaremos v_a) es una velocidad angular, y es proporcional el cociente entre el arco recorrido  y la distancia. Así que, según Kepler,

\frac{v_{a1}}{v_{a2}}=\frac{L_1/d_1}{L_2/d_2}=\frac{d_2/d_1}{d_1/d_2}=\frac{d_2^2}{d_1^2}

Mientras que según Hiparco las velocidades son iguales en 1 y 2, así que L_1=L_2=L y

\frac{v_{a1}}{v_{a2}}=\frac{L/d_1}{L/d_2}=\frac{d_2}{d_1}

Las velocidades aparentes del Sol v_{a1} y v_{a2} se conocían con precisión en la época de Cassini. La novedad era que ahora él podía medir la proporción de distancias, porque es la inversa de la proporción de tamaños aparentes del Sol: \frac{d_2}{d_1}=\frac{\theta_1}{\theta_2}, y el tamaño aparente del Sol \theta se obtiene fácilmente de la longitud de los ejes de la elipse de luz sobre el suelo. La meridiana de Cassini permitía obtener el valor numérico de \frac{d_2}{d_1}. Si este número coincidía con \frac{v_{a1}}{v_{a2}}, tenía razón Hiparco; si era el cuadrado de este número el que coincidía con \frac{v_{a1}}{v_{a2}}, tenía razón Kepler. ¡Podía decir entre Hiparco y Kepler, entre los “dos máximos sistemas del mundo”, midiendo el tamaño de una elipse!

*

Pero como siempre, las cosas son más complicadas en la realidad que sobre el papel. Las dos distancias son bastante parecidas: hoy sabemos que d_1=147,1 \cdot 10^6 km  y d_2=152,1 \cdot 10^6 km), así que su cociente resulta ser:
\frac{d_2}{d_1}=1,034
un número muy cercano a uno, y por tanto muy parecido a su cuadrado:
\frac{d_2^2}{d_1^2}=1,069
¡Una diferencia de poco más del 3%! La medida del tamaño de la elipse tenía que tener como mínimo esa precisión para poder decidir entre Hiparco y Kepler. Recordemos el aspecto de la elipse de luz sobre el suelo:
EscalaMancha1
Gracias a que el agujero es muy pequeño, la elipse está muy bien definida: en el primer post dijimos estimamos un eje menor de 30 cm, con una incertidumbre de 1 cm. Un error relativo de 1/30: aproximadamente un 3%, justo lo que Cassini necesitaba: sabía lo que hacía al construir una meridiana tan enorme.

Las medidas de Cassini dieron la razón a Kepler: su elipse en el suelo ratificó las elipses en el cielo. Fue la primera confirmación independiente de las leyes de Kepler, y aunque este resultado no demostraba que la Tierra se movía (es compatible con que sea el Sol el que se mueve en una elipse a velocidad variable), el sistema de Kepler aplicado al sistema solar en su conjunto sólo podía entenderse de modo heliocéntrico.

*

(Epílogo) Las cosas son siempre más complicadas en la realidad que sobre el papel, decía, y esta historia no es una excepción. Cassini había demostrado la superioridad de la hipótesis de Kepler sobre la de Hiparco, pero las órbitas elípticas no le convencían, y prefirió postular otra figura geométrica, los óvalos de Cassini. No tuvo mucho éxito, y cuando entró en escena Newton cualquier duda quedó despejada, porque las leyes de Kepler se deducían como una consecuencia natural de la gravitación universal… pero no para Cassini, que no aceptó la teoría de de Newton.

Unos años después de la construcción de la meridiana, Cassini fue fichado por Jean-Baptiste Colbert, para fundar el observatorio de París. No se limitó a hacerlo, sino que demostró un singular talento organizativo, y fundó una dinastía de astrónomos, que fueron conocidos como Cassini II, Cassini III y Cassini IV… pero eso es otra historia, y debe ser contada en otra ocasión.

 

Midiendo el tamaño del instrumento de medida

En el post anterior admirábamos la meridiana de San Petronio, en Bolonia, que resultaba ser el reloj más preciso de su época. Un reloj de sol, en realidad, pero que por sus gigantescas dimensiones transforma el lento giro del astro rey (15º por hora) en un rápido desplazamiento de una elipse de luz sobre el suelo (12 cm por minuto). El otro ingrediente para conseguir la precisión es un orificio de entrada de la luz muy pequeño y muy regular, para que la mancha luminosa esté muy bien definida. Así puede determinarse el momento en que está centrada sobre la línea con poca incertidumbre, del orden de 1 cm, que se transforma en 1/12 de minuto: 5 segundos.

La elipse de luz se mueve tan rápido porque la velocidad angular del rayo (la del Sol) se traduce en la velocidad lineal de la mancha multiplicando por la longitud del rayo, y esta longitud es enorme en San Petronio. ¡Si queremos precisión, hay que hacer las cosas a lo grande!

La relación entre tamaño y precisión es común a todos los instrumentos astronómicos (y la meridiana lo es). Por lo menos, a todos los anteriores al telescopio: en gran Tycho Brahe realizó, a finales del siglo XVI, unas observaciones astronómicas de una exactitud sin precedentes a base de usar instrumentos de una escala colosal (pude verse alguno aquí)

Pero (atención: entramos en modo cuantitativo) quizá lo más interesante es que esta relación entre velocidad angular y velocidad lineal nos permite medir nuestro propio instrumento, es decir, el tamaño de la iglesia de San Petronio. En efecto, si r es la longitud del rayo y \omega la velocidad angular, la velocidad lineal de la mancha de luz sobre el suelo es simplemente

v=\omega {\cdot} r , y por tanto r=\frac{v}{\omega}

Antes de hacer la cuenta, expresamos la velocidad angular en radianes por minuto:

\omega=15\left(\frac{grados}{hora} \right) \left(\frac{1\, hora}{60 \, min} \right) \left(\frac{\pi \, rad}{180 \, grados} \right)=\frac{\pi}{720}\left(\frac{rad}{min} \right)

Y recodamos que en el post anterior vimos que v=12,6 cm/min, así que

r=\frac{12,6 \cdot 720}{\pi}=2888 \, cm \approx 29 \, m

Pero hay más. No sólo la velocidad de la elipse el proporcional a r: también su tamaño. Así que podemos hacer otra estimación independiente de r. El haz de luz es un cono, cuyo vértice es el agujero, porque los rayos de sol no son completamente paralelos; y no lo son porque el Sol no es un punto, sino un pequeño disco, con un tamaño angular aparente \theta:

Meridiana esquema

Esquema de la meridiana de San Petronio. Los rayos del Sol (S) entran por el agujero A, a un altura h sobre el suelo, produciendo la elipse de ejes D1 y D2 (representada esquemáticamente arriba).

Así que el diámetro del cono a una distancia r es \theta r , que se corresponde con el eje menor D_1 de la elipse (el mayor está alargado por la oblicuidad de los rayos, como muestra la figura). Por tanto, recordando que habíamos medido un eje menor de 0,3 m, y sabiendo que \theta vale un poco más de medio grado (redondeando, una centésima de radián), tenemos que

D_1=\theta r \Rightarrow r=D_1 / \theta =0,3/10^{-2}=30 \, m

…que está en muy buen acuerdo con el resultado anterior.

Pero si queremos medir el tamaño de la iglesia lo que interesa no es la longitud del rayo (que depende de su oblicuidad) sino la altura del techo, es decir, la altura a la que está situado el agujero…¡y también esto lo podemos medir! A la vista de la figura, el cociente de los dos ejes de la elipse es

D_1/D_2= sen(\beta)=h/r

Vimos que D_1=30 \, cm y D_2=36 \, cm luego, usando nuestra última (y más redonda) estimación de r,

h=r D_1/D_2=30 {\cdot}30/36=25 \,m

AlturaSanPetronio.png

Nuestra estimación de la atura del techo de San Petronio. Comparando con la persona que se ve cerca de la base de la flecha, no parece inverosímil…

¿Hemos acertado con la altura? En esta página he encontrado el dato: Cassini puso el orificio del techo a una altura de 1000 pulgadas francesas, lo que equivale a 27,07 m. No está mal, para una estimación tan burda como la nuestra: menos del 10% de error.

Una moraleja para alumnos: cuando en las prácticas de laboratorio tenemos un error importante, la culpa casi nunca está en la falta de precisión de los aparatos. Aquí sólo hemos usado un móvil para hacer dos fotos y un papel (el plano que nos servía para marcar la escala) con el que hemos estimado las distancias a ojo.

Pero en la investigación científica a veces hace sí hace falta mucha precisión, y la meridiana de Bolonia la puede proporcionar, si la usamos como profesionales y no como turistas con un móvil y un plano. En el próximo (y último post de la serie, lo prometo), veremos cómo lo hizo el gran Giovanni Domenico Cassini.

*

(Propina para expertos) Hemos encontrado que sen(\beta)=D_1/D_2= 0,83 \, \Rightarrow \, \beta=56,4 ^{\circ}. Esta es la inclinación de los rayos, es decir, la altura del Sol sobre el horizonte, y a partir de ésta podemos obtener la latitud \alpha  del lugar de observación. En efecto, en el equinoccio, el Sol a mediodía está a una altura \beta=90^{\circ}-\alpha (por ejemplo, para el ecuador, \alpha=0^{\circ}  y \beta=90^{\circ}: sol en el cénit; para el polo norte, \alpha=90^{\circ} y \beta=0^{\circ}: sol rasante con el horizonte). Así que si mis observaciones se hubieran hecho el 21 de septiembre a mediodía, deduciríamos que la latitud de Bolonia es \alpha=90^{\circ}-\beta=90^{\circ}-56,4 ^{\circ}=33,6^{\circ}.

Pero en el solsticio de verano, el 21 de junio,  el sol está 23,5^{\circ} más alto: \beta=90^{\circ}-\alpha+23,5^{\circ}, lo que nos daría \alpha=90^{\circ}-56,4 ^{\circ}+23,5^{\circ}=57.1^{\circ}. Como mis medidas se hicieron a mediados de agosto, vamos a poner el valor medio de los dos resultados: la latitud de Bolonia sería \alpha=(33,6^{\circ}+57.1^{\circ})/2=45,3^{\circ}. La latitud real es 44,5^{\circ}: un acuerdo muy bueno teniendo en cuenta lo burdo de nuestras aproximaciones (no era exactamente mediodía, y la interpolación entre el solticio y el equinoccio es más complicada).

El reloj más preciso del mundo, en 1655

Cuando Charles Dickens visitó Bolonia dejó escrito que lo único que le gustó fue la gran meridiana en el suelo de la iglesia de San Petronio. Yo debo ser menos exigente que Dickens, porque este verano he encontrado muchas cosas atractivas en Bolonia… pero tengo que reconocer que nada me ha gustado tanto como su meridiana.

Pero ¿qué es una meridiana? A simple vista, esto:

meridiana

Un raíl metálico, muy delgado y muy largo, incrustado en el suelo de la iglesia. El turista típico seguramente le echará un vistazo rápido y continuará visitando San Petronio. Pero si se acerca a mirar verá unos intrigantes números, fechas y símbolos astronómicos a lo largo de la línea. Y si picado por la curiosidad explora los alrededores, pronto encontrará algunas pistas…

Quizá le llame la atención un círculo de luz sobre uno de los pilares vecinos, cerca del capitel (marcado como 1):

Mancha de luz

Si se queda mirando un rato, notará que la mancha de luz se mueve (en la foto, la mancha dobla una arista del pilar; unos segundos antes todavía no lo hacía), y deducirá que esa luz entra por un pequeño agujero en el techo, decorado con un hermoso sol (marcado en la foto como 2). Así que  el movimiento de la mancha de luz es consecuencia del movimiento del Sol. Un poco después, la luz da sobre el suelo de la iglesia… y se va aproximando a la línea metálica del suelo.

El turista curioso se pregunta ¿por dónde cruzará la línea? Y se le enciende la bombilla: había fechas marcadas sobre ella… ¿no cruzará precisamente por la fecha de hoy? ¡La meridiana sería entonces un calendario? Tiene sentido, porque en verano, con el sol más alto, los rayos llegan al suelo cerca de la vertical del agujero del techo y en invierno los rayos más oblicuos llegan más lejos. Y eso cuadra con la posición de las fechas marcadas en suelo.

Efectivamente: la meridiana es un calendario. Es una línea recta orientada exactamente en dirección norte-sur, y en su vertical hay un agujero por el que entra un delgado haz de luz del Sol. De este modo, a mediodía, cuando el Sol está justo en dirección sur, el delgado haz de luz que entra por el agujero incide sobre la línea, en una posición que depende de la altura del Sol a mediodía, y por tanto, del día del año.

Pero si los rayos cruzan la línea exactamente a mediodía, es que la meridiana es también un reloj. ¿Qué precisión tiene este reloj? Para saberlo no sirve esperar a ver si el cruce se produce exactamente a las 12 del mediodía, porque la hora que nos marca la meridiana es la hora solar, que no coincide con la hora oficial. No sólo por el famoso cambio de hora entre verano e invierno, sino porque la hora oficial es la misma en todo un huso horario y la hora solar varía continuamente al desplazarnos  de este a oeste: no es la misma en Venecia, Bolonia o Génova (¡y mucho menos en Madrid, pese a que tenga la misma hora oficial!).

En realidad, el error de este reloj vendrá dado por la precisión con la que consigamos determinar el cruce de la mancha de luz con la línea meridiana. Y aquí es cuando yo, que no puedo evitar ser físico también en vacaciones, entro en modo cuantitativo. Como no tenía una regla, puse en el suelo el plano que llevaba en el bolsillo como referencia e hice esta foto (lo más vertical que pude, para evitar efectos de perspectiva):

EscalaMancha1

El lado largo del plano, casi en contacto con la mancha de luz, mide 21 cm, así que esta es una elipse de aproximadamente 36 x 30 cm. Está muy bien definida, y es muy simétrica, así que yo diría que podemos determinar a ojo si está bien centrada en una línea con un error del orden de 1 cm.

Pero ¿a cuánto tiempo corresponde un centímetro? Tenemos que determinar a qué velocidad se mueve la elipse de luz. Basta con esperar un rato sin mover el plano y tomar otra foto:

EscalaMancha2

Entre las dos fotos han pasado 5 minutos, y la mancha se ha movido una distancia que es más o menos el triple de la longitud del lado largo del plano, o sea, unos 63 cm. Por tanto su velocidad es de 63/5= 12.6  cm/minuto. Vamos a redondearla a 12 para decir que en recorrer 1 cm tarda aproximadamente 1/12 de minuto, es decir, 5 segundos. Ese es el error en la determinación del mediodía con esta meridiana.

Hoy puede parecernos mucho, pero cuando Giovanni Domenico Cassini la construyó, en 1655, la meridiana de San Petronio era el reloj más preciso del mundo, y con mucha diferencia: lo habitual era que los relojes mecánicos de entonces se adelantaran o atrasaran unos 15 minutos al día. Justo al año siguiente Christiaan Huygens inventaba el reloj de péndulo, que fue una revolución en la medida del tiempo: en lugar de 15 minutos, su error era del orden de 15 segundos al día… ¡pero todavía era mayor que el de la meridiana de Bolonia!

Todavía podemos aprender más de la principal atracción de Bolonia, según Charles Dickens. Será en el próximo post.

Nota: no me pude quedar hasta en San Petronio hasta que la mancha de luz cruzara por la meridiana, pero en las fotos de esta página se ve muy bien.

España en 1486, según la Geografía de Ptolomeo

Claudio Ptolomeo, que vivió en Alejandría en el siglo II d.C, tiene el mérito de haber escrito tres de los libros más influyentes de la historia: el Almagesto, el Tetrabiblos y la Geografía. El primero es quizá el más conocido: es el tratado que compilaba todo el saber astronómico de la antigüedad, y que los árabes llamaron “el más grande” (eso significa su nombre). El segundo fue la biblia de los astrólogos durante más de mil años. El tercero fue el primer atlas.

Todos hemos tenido entre las manos un atlas y puede parecer que algo tan común es un logro mucho más modesto que los otros dos volúmenes, de nombres esotéricos e imponentes. Creo que es justo al contrario: el hecho de que un atlas nos resulte tan familiar dos mil años después de que Ptolomeo lo inventase demuestra precisamente su  genialidad.

El atlas de Ptolomeo contenía un mapamundi y un conjunto de mapas regionales, cada uno a la escala más apropiada. Pero era mucho más. Empezaba con un tratado cartográfico que explicaba científicamente la determinación de la latitud y longitud, así como una solución (la primera) al difícil problema de representar una superficie esférica sobre el plano. Y la mayor parte del libro la ocupaba una lista con las latitudes y longitudes de todas las ciudades y accidentes geográficos representados.

La Geografía marcó un estándar que fue seguido por todos los atlas durante siglos, hasta la actualidad: es asombroso ver que el índice de los que se publican hoy sigue siendo muy similar al de Ptolomeo, con el mismo listado y las mismas explicaciones cartográficas.

800px-ptolemy_cosmographia_1467_-_world_map

Mapamundi de la Geographia de Ptolomeo, traducida por Jacopo d’Angelo y publicada en 1467 en el monasterio de Reichenbach [Fuente: Wikipedia commons]

Los mapas originales no sobrevivieron durante la Edad Media, pero el listado de lugares y las descripciones de las proyecciones cartográficas sí se conservaron, y permitieron reconstruirlos a los estudiosos bizantinos. La Geografía fue traducida al latín a principios del siglo XV por Jacopo d’Angelo, uno de los primeros humanistas italianos, que había aprendido griego con el embajador bizantino Manuel Chrysoloras, y viajado con él a Constantinopla en 1395. La Europa medieval no conocía nada parecido, y la traducción, aunque fue criticada por sus imprecisiones (d’Angelo no era matemático ni astrónomo) fue un best seller, en una época en la que todavía los libros se copiaban manuscritos.

Una de las primeras ediciones impresas de la Geografía fue la publicada en Ulm por Johannes Reger en 1486. Aquí tenemos el mapa de la Península Ibérica:

(observen las escalas vertical y horizontal que indican, respectivamente las latitudes y las longitudes… aunque, obviamente, estas últimas no se medían respecto al meridiano de Greenwich).

La Biblioteca de Castilla-La Mancha en Toledo posee un ejemplar de este libro, y podemos hojearlo en la Biblioteca Virtual del Patrimonio Bibliográfico, en concreto, en este enlace. Curioseando por sus páginas he encontrado (en la 243) este mismo mapa, un poco más sucio pero a una escala excepcionalmente detallada, tanto que permite leer los nombres de las ciudades (haciendo click para verlo con una resolución muchísimo mayor):El lector curioso puede entretenerse buscando sitios conocidos, aunque no lo facilita que estén en latín… Pero curiosamente, en esta edición los mapas están duplicados, y tres páginas después tenemos esta versión “política” de la península, con los nombres contemporáneos (de nuevo click para verlo en detalle):

Aquí ya no aparecen latitudes y longitudes, el contorno no es precisamente igual al anterior y las montañas, que siguen pareciendo pegotes de plastilina, son muchas más y no están en los mismos sitios…

Intrigado por estas discrepancias, me he preguntado hasta qué punto eran exactas las coordenadas del atlas, y hasta qué punto las siguió Johannes Reger. Pero no les voy a decir mis conclusiones. En lugar de eso, para que puedan sacarlas ustedes mismos, aquí tienen una tabla de longitudes (el primer número) y latitudes (el segundo), sacadas de las tablas del libro (están entre las páginas 118 y 125 del libro, pueden consultarse en este enlace), para algunos lugares reconocibles:

Corduba (Córdoba): 9º 1/3, 38º 1/3
Italica (Sevilla): 7º, 38º
Sacrum Promontorium (Cabo de San Vicente): 2º 1/2, 38º 1/4
Salmantica (Salamanca): 8º 1/2, 41º 1/3
Cartago Nova (Cartagena): 13º, 37º 1/3
Emporie (Ampurias): 18º 1/2, 42º 1/3
Lucus Augusta (Lugo): 7º 1/3, 43º 1/3
Complutum (Alcalá de Henares): 10º 1/2, 41º 1/2
Toletum (Toledo): 10º, 41º
Palma (Palma de Mallorca): 17º 1/6, 39º 1/4

… por si alguien tiene la paciencia que me ha faltado a mi 😉

*

P.S.: Gracias a mis alumnos del curso Las ideas de la ciencia, cuyos comentarios me han inspirado este post.

Alta mar

Le lengua está llena de expresiones que, si las miramos bien (pero no solemos hacerlo, porque nada nos resulta más familiar que nuestra lengua) parecen absurdas. Por ejemplo, “alta mar”: la parte del mar, nos dice el DRAE, que está a bastante distancia de la costa. Viene a ser un sinónimo de “mar abierto”, una expresión que tiene sentido porque sugiere que no hay ninguna costa a la vista que “cierre” el mar.

Pero ¿puede haber algo menos alto que la mar? Medimos las alturas sobre el nivel del mar, precisamente porque ese nivel es el mismo en todas partes. ¿Hay algo de lo que tenga menos sentido decir que “es alto” que el propio cero de alturas?

Y sin embargo, una expresión como “alta mar” no puede haberse consagrado por el uso sin que tenga una razón de ser, un significado que se nos oculta pero que debió ser natural en su origen. ¿Acaso pensaban los primeros marineros que se aventuraron lejos de la costa, en alta mar, que al hacerlo sus barcos estaban subiendo?

Sorprendentemente, eso es justo lo que pensaba Colón cuando cruzaba el Atlántico. No porque sus sentidos le engañaran, claro: no experimentaba la sensación de ascender por un mar en pendiente. Era su teoría la que se lo decía. Entender por qué nos puede enseñar un par de cosas sobre cómo funciona la ciencia.

*

Tenemos que remontarnos, como casi siempre, a Aristóteles. El filósofo por antonomasia había enseñado que el universo era una serie de esferas concéntricas, con la Tierra en el centro. El mundo sublunar (“de la luna para abajo”) estaba hecho de los familiares cuatro elementos: tierra, agua, aire y fuego; mientras que el material del supralunar era totalmente distinto: el misterioso quinto elemento, el éter. Su movimiento natural era circular y uniforme, de modo que siempre se cerraba sobre sí mismo, y los cielos eran eternos e inmutables; mientras que en la Tierra la mezcla de elementos provocaba cambios incesantes.

Cada elemento tenía su lugar natural, por orden de densidad, desde el más pesado (la tierra) en el centro, al más ligero (el fuego), ya en la vecindad de la esfera de la luna, pasando por el agua (los mares) y el aire (la atmósfera). La tendencia a buscar su lugar propio era la que causaba que las piedras en la atmósfera o el mar cayeran, que las burbujas ascendieran en el agua y que el fuego lo hiciera en el aire: los movimientos naturales de los elementos terrestres eran rectilíneos y verticales, en contraste con el movimiento circular del éter.

El mundo de Aristóteles poseía un maravilloso orden lógico, pero había un pequeño problema. La tierra, más pesada que el agua, tendría que estar por debajo de él. Sabemos que hay tierra bajo los mares, pero ¿porqué también hay tierras por encima del nivel del mar? Parece que una esfera de agua debería rodear a una esfera de tierra, igual que el aire de la atmósfera nos rodea, siempre por encima de la tierra y el agua.

Había que encontrar una explicación, y como no se podía negar la existencia de tierras emergidas, la alternativa que los eruditos de la Edad Media tomaron fue minimizar su importancia. Vean por ejemplo esta página de uno de los libros más famosos de la historia de la ciencia,  De Sphaera Mundi. Escrito hacia 1230 por Johannes Sacrobosco (su nombre original era John of Holywood, pero en aquella época el latín tenía más prestigio que la meca del cine 😉 ) tuvo una inmensa popularidad: se conservan ciento de copias manuscritas, y tras imprimirse por primera vez en 1472 se estuvo reeditando ininterrumpidamente hasta el siglo XVII.

El significado de esa especie de sello circular queda mucho más claro si lo ampliamos y lo coloreamos así (sacado de aquí, el color es mío):

En efecto, es un esquema de la Tierra, con las esferas de tierra, agua, aire (esas bonitas nubecillas…) y fuego. Pero la esfera de la Tierra está descentrada y es mucho menor que la de agua, de modo que solo una pequeña parte sobresale del nivel del mar.  Y al no ser concéntricas las dos esferas, ese nivel va subiendo si nos alejamos de la costa, cuando nos adentramos en alta mar

*

Sacrobosco no fue el único autor que busco solucionar el problema de la existencia de las tierras emergidas (en su magnífico libro La invención de la ciencia, donde he encontrado esta historia, David Wootton nos cuenta otras posibles soluciones), pero su propuesta fue la más popular. Curiosamente, Aristóteles no había considerado que hubiera  un problema: fueron sus comentaristas medievales los que, más papistas que el papa, quisieron que su modelo lo explicara todo, y tuvieron que introducir modificaciones que siempre implicaban eliminar algo de la hermosa simetría del original.

Este es un tema recurrente en la historia de la ciencia: una teoría excelente en líneas generales (como era la de Aristóteles cuando se formuló) se encuentra con anomalías que no puede explicar bien. Si queremos mantener la validez absoluta de la teoría (como Sacrobosco y compañía) tenemos que modificarla, y esas modificaciones serán a menudo ad hoc, es decir, serán un parche que permitirá seguir adoptando la teoría a costa de que sea menos elegante. Hay pues un compromiso entre elegancia y poder explicativo, algo que rara vez se suele explicar cuando nos cuentan, como casi siempre, la historia de la ciencia como un cuento de buenos y malos (perdón, de torpes y listos, pero ya me entienden).

Cuál es el mejor compromiso puede ser opinable, y por eso no es raro que coexistan varias teorías, o al menos, varias versiones de una teoría… generalmente hasta que nuevos hechos vienen a desmentir alguna de ellas. Así, la teoría de la alta mar sostenía que las tierras emergidas eran poco extensas y que, en particular, no había continentes en las antípodas, pero Colón y los descubrimientos de nuevas tierras que siguieron lo desmintieron.

Sin embargo (y esta es la otra cosa sobre el funcionamiento de la ciencia que nos enseña esta historia), ese desmentido (lo que Karl Popper llamaba falsación) casi nunca es tan concluyente como se piensa. Incluso en el caso que nos ocupa, la idea de la alta mar mantuvo su atractivo muchos años después de Colón. En efecto: una ventaja de esta teoría era que permitía explicar el origen de los ríos. Durante muchos siglos, se pensaba que las lluvias eran insuficientes para alimentar continuamente ríos tan caudalosos como el Nilo o el Danubio, y se explicaba que sus fuentes estaban por encima del nivel del mar en la costa pero no por encima del máximo nivel del mar. Se suponía que el agua del mar se filtraba por fisuras en su fondo, y emergía en las fuentes y los ríos (¡vasos comunicantes!). Todavía en 1663 el libro del jesuita Gaspar Schott traía esta ilustración:

El punto más alto del mar es F, mientras que el nivel de la costa es BC. Queda abierta la cuestión, dice Schott, de si las cimas de las montañas, como E, pueden estar más altas que el punto más alto del mar. Como vemos, Schott no dibuja ya una Tierra como la de Sacrobosco, algo que era imposible después de que Elcano diera la vuelta al mundo, pero se aferra a la idea de que de alguna manera el nivel del mar no es uniforme, porque eso proporciona una explicación conveniente a algo que no puede explicar de otra manera.

En definitiva: la historia de la ciencia siempre es mucho más complicada (¡y más interesante!) de lo que nos cuentan los divulgadores. Y quizá la lección más importante: detrás de una idea “absurda”, como la de la alta mar, siempre hay alguna explicación, y muy raramente suele ser la superstición y el oscurantismo de los antiguos (esos comodines de nuestra pereza intelectual).

Mapas en la Biblioteca Nacional

Sólo queda una semana para que cierre en Madrid una exposición extraordinaria: Cartografías de lo desconocidoen la Biblioteca Nacional. Esta mañana he estado allí y he podido contemplar esto:

IMG_20180121_113128

¿Ven ese dibujo de la izquierda?¿Les suena? Aquí tienen lo que nos dicen en la exposición:

IMG_20180121_113226

(Por si todavía alguien pensaba que en la Edad Media creían en una Tierra plana). Pero en la exposición hay mucho más que mapas. También me emocionado al encontrar esto:

IMG_20180121_113626

¡El Misterium Cosmographicum de Kepler! (1596). Y esto otro:

IMG_20180121_120114

El libro en el que nuestros heroicos (y, ay, desconocidos) Ulloa y Jorge Juan cuentan su expedición al Perú para medir el tamaño y forma de la Tierra.

La exposición es un muestrario excepcional de los fondos cartográficos de la Biblioteca Nacional. Realmente bonita de ver, incluso para los que no sean aficionados a los mapas… y además gratis.

Dulce Newtondad

¿Quién ha sido la persona más influyente de la historia? Seguramente muchos dirán que Jesucristo (yo me incluyo). Sin embargo, hay voces autorizadas, como el astrofísico Michael Hart, que no están de acuerdo: en su célebre lista de 1978, el número uno es Mahoma… a pesar de que por entonces Jomeini aún no había llegado al poder y Bin Laden era un anónimo estudiante de ingeniería. Hart argumentaba que, siendo el cristianismo la religión más extendida y que más ha marcado a la humanidad, no se puede considerar a Jesucristo su único fundador, porque San Pablo tuvo un papel decisivo, a diferencia del caso del Islam, creado íntegramente por Mahoma. Por eso coloca a Jesucristo tercero en la lista, y a Pablo de Tarso en el sexto lugar, tras Buda (4ª posición) y Confucio (en el 5º puesto).

Polémicas aparte, el lector atento se habrá dado cuenta de una cosa: hemos mencionado al primero, el tercero, el cuarto y el quinto de la lista de Hart, pero ¿quién es el segundo? Ese mismo lector seguro que sabe ya responder a la pregunta: sólo puede ser Isaac Newton.

sir_isaac_newton_281643-172729

Y en efecto, puede haber discusión para  elegir al personaje más importante de la historia de las religiones, pero por suerte eso no pasa con la historia de la ciencia: nadie bien informado puede negar el puesto de honor a sir Isaac Newton.

Otro Isaac, el buen doctor Asimov, lo explicaba en su libro Cien preguntas básicas sobre la ciencia:

¿Quién fue, en su opinión, el científico más grande que jamás existió?

Si la pregunta fuese “¿Quién fue el segundo científico más grande?” sería imposible de contestar. Hay por lo menos una docena de nombres que, en mi opinión, pueden aspirar a esa segunda plaza. Entre ellos figurarían, por ejemplo, Albert Einstein, Ernest Rutherford, Niels Bohr, Louis Pasteur, Charles Darwin, Galileo Galilei, James Clerk Maxwell, Arquímedes y otros. (…) Pero como la pregunta es “¿Quién es el más grande?”, no hay problema alguno. En mi opinión, la mayoría de los historiadores de la ciencia no dudarían en afirmar que Isaac Newton fue el talento científico más grande que jamás haya visto el mundo. Tenía sus faltas, vive el cielo: era un mal conferenciante, tenía algo de cobarde moral y de llorón autocompasivo y de vez en cuando era víctima de serias depresiones. Pero como científico no tenía igual.

Decir que “tenía sus faltas” es muy amable para con Newton (¡por algo llamaban a Asimov “el buen doctor”!): en realidad sir Isaac era un personaje sumamente antipático en lo personal, que se peleó con todos sus rivales científicos, dirigió con especial crueldad la Casa de la Moneda (encargándose personalmente de que se ahorcase a los falsificadores) y al que su ayuda de cámara sólo vio sonreír una vez en décadas. Un mal bicho, en resumen… pero el mayor genio científico de la historia.

Pero ¿qué tiene que ver Newton con la Navidad? Aquí lo explica Sheldon Cooper…

…pero si quieren saber más, les recomendó el podcast de El Independiente en el que converso con Mario Viciosa sobre el que es, sin sombra de duda, el mayor científico de la historia.

[Mas podcasts de De Tales a Newton aquí]

¿No será usted aristotélico sin saberlo? (y II)

Monsieur Jourdain, el burgués gentilhombre de Moliere, se quedó muy sorprendido al saber que hablaba en prosa: seguramente pensaba que con ese nombre la “prosa” debía ser un género literario exótico, y no la manera de hablar común y corriente.

No hace falta saber qué es la prosa para hablar en prosa. Y no hace falta saber quién fue Aristóteles para pensar aristotélicamente, porque resulta que es la forma de pensar común y corriente.

En la clase de física nos dicen que para que un cuerpo se mueva no hace falta que actúe ninguna fuerza sobre él: es la primera ley de Newton. Y que si actúa una fuerza sobre él, lo que hace es acelerarlo: segunda ley de Newton. Esto puede parecer bien sobre el papel, pero no casa con la realidad. En el supermercado nos pasamos la tarde empujando el carro… y no vemos que se acelere como dice Newton. Imaginemos un carro de 40 kg, al que empujamos con una fuerza de sólo 10 Nw (la necesaria para sostener un cartón de un litro de leche). La aceleración según Newton sería F/m=10/40=0.25 m/s2, lo que significa que en media hora (1800 s) tendríamos una velocidad de 1800·0.25=450 m/s: ¡habríamos roto la barrera del sonido!

Lo que experimentamos en el supermercado, y prácticamente en todas partes, no se corresponde con la física de Newton sino con la de Aristóteles, que decía que la acción de una fuerza constante produce una velocidad constante. Con nuestros 10 Nw de fuerza mantenemos el carrito a una cierta velocidad, y si empujamos más fuerte, va más deprisa. Nuestra impresión es que la fuerza es proporcional a la velocidad que se consigue.

¿Por qué no superan la velocidad del sonido al cabo de un rato largo?

Vemos así que, en primera aproximación, la física de Aristóteles se parece a la de Newton poniendo “velocidad” donde él pone “aceleración”. Podríamos incluso formular dos leyes de la dinámica de Aristóteles, análogas a las de Newton:

  • Un cuerpo sobre el que no actúa una fuerza permanece en reposo (velocidad=0).
  • Un cuerpo sobre el que actúa una fuerza de mueve con una velocidad proporcional a esa fuerza.

(Aristóteles añadía a la segunda ley el detalle de que para que un cuerpo empiece a moverse, la fuerza que actúe sobre él debe superar un cierto valor umbral, “porque si no fuera así, un hombre podría mover un barco, sólo que con una velocidad extremadamente pequeña”).

Las leyes de Aristóteles no sólo explican muy bien nuestra experiencia empujando el carro del supermercado, sino muchas otras: cuando corremos, nuestro esfuerzo parece, al menos dentro de unos límites, proporcional a la velocidad constante que alcanzamos; conduciendo, el coche va a una velocidad constante que parece proporcional a la potencia que desarrolla el motor, etc. Lo que nunca vemos es que con un esfuerzo o potencia constante vayamos cada vez más y más deprisa. Para acelerar el coche, hay que pisarle. Y por mucho que le pisemos durante mucho tiempo, no rompemos la barrera del sonido: necesitaríamos más potencia, de acuerdo con la idea de que la velocidad es proporcional a la fuerza.

Aunque no hayamos formulado conscientemente estas experiencias y nadie nos haya hablado de las leyes de Aristóteles, sino, al contrario, de las de Newton, lo cierto es que hemos interiorizado la física aristotélica porque así es como funciona el mundo en nuestra experiencia cotidiana: con la “velocidad” haciendo lo que Newton dice que hace la “aceleración”.  Y así llegamos a la pregunta de nuestro test de aristotelismo, que reproduzco aquí ya con los resultados (para las 81 respuestas que había en el momento de escribir esto):

Un balón es lanzado verticalmente hacia arriba con velocidad inicial de 5 m/s. En su posición más alta, el balón…

  1. Tiene aceleración cero [17%]
  2. Tiene una aceleración de 9.8 m/s2 hacia abajo [58%]
  3. Tiene una aceleración de 9.8 m/s2 hacia arriba [0%]
  4. Tiene una aceleración instantánea de 0, que rápidamente pasa a ser 9.8 m/s2 [25%]
  5. Cambia su aceleración de 9.8 m/s2 hacia arriba a 9.8 m/s2 hacia abajo [0%]

La respuesta correcta (newtoniana) es la 2: el balón está sometido a la aceleración de la gravedad, que vale, para todos los objetos, 9.8 m/s2 hacia abajo, independientemente de su masa, estado de movimiento, etc.

La respuesta 3 es absurda, así que no es extraño que no haya cosechado ningún voto. Las otras tres opciones, sin embargo, son más interesantes. La velocidad del balón vale instantáneamente cero en el punto más alto de la trayectoria, donde cambia de sentido. Así que las opciones 1, 4 y 5 (salvo los valores numéricos) serían correctas o casi correctas si cambiáramos “aceleración” por “velocidad”, como tendería a hacer un aristotélico. Sumando el 17% de la opción (1) y el 25% la opción (4), alcanzamos un respetable 42% de respuestas aristotélicas.

Quizá lo más curioso de este resultado es que es casi idéntico al que obtuve cuando hace tres años planteé la misma pregunta a los alumnos de primero de ingeniería mecánica en el primer día de curso. Las respuestas (para una muestra de 99) fueron así: 1=14%, 2=54%, 3=0%, 4=27%, 5=5%: un 46% de aristotélicos.

En resumen: entre los alumnos que empiezan una carrera de ingeniería y entre los inteligentes lectores de este blog, la física aristotélica sigue disputándole la primacía a la física newtoniana, a pesar de que sin duda ambos grupos han estudiado más de un curso de mecánica. No me cabe duda de cuál sería el resultado si preguntáramos a un público sin estudios científicos.

Después de más de dos mil trescientos años y de un número incalculable de planes de estudio, Aristóteles sigue vivo.